推荐算法
文章平均质量分 83
推荐算法
mesie美希
这个作者很懒,什么都没留下…
展开
-
YoutubeDNN实现
网上关于YouTubeDNN的介绍有很多,这里就不详细介绍1.把推荐看做多分类问题可以把推荐当作一个多分类问题,把每一个视频当作一个分类,则给定用户U和上下文C的条件下,在时间t观看第i个video(第i类)的概率为:其中u是用户的向量表示(embedding),v表示video的向量表示(embedding)。在模型中,利用用户历史和上下文来学习用户的embedding,利用用户的embedding对每个用户进行视频推荐;类似于Word2vec,模型在训练过程中可以利用负采样进行优..原创 2021-11-04 09:51:45 · 1051 阅读 · 4 评论 -
常用推荐算法实现(包括召回和排序)
目前工业界常用的召回排序模型主要有:召回模型(1)基于内容的召回使用item之间的相似性来推荐与用户喜欢的item相似的item。(2)基于协同过滤的召回协同过滤主要可以分为基于用户的协同过滤、 基于物品的协同过滤、基于模型的协同过滤(如矩阵分解als、svd、svd++等等)。(3)基于关联规则召回基于关联规则召回通常有频繁模式挖掘,如Apriori、Fpgrowth等模型(4)基于深度学习模型的召回基于深度学习模型的召回也称之为embedding向量召回(每个user原创 2021-03-05 15:29:14 · 1607 阅读 · 5 评论 -
基于faiss的内容推荐实现
1.背景根据物品或内容的元数据,发现物品或内容的相关性,然后基于用户以前的喜好记录推荐给用户相似的物品,如图所示:上图给出了基于内容推荐的一个典型的例子,电影推荐系统,首先我们需要对电影的元数据有一个建模,这里只简单的描述了一下电影的类型;然后通过电影的元数据发现电影间的相似度,因为类型都是“爱情,浪漫”电影 A 和 C 被认为是相似的电影(当然,只根据类型是不够的,要得到更好的推荐,我们还可以考虑电影的导演,演员等等);最后实现推荐,对于用户 A,他喜欢看电影 A,那么系统就可以给他推荐类似.原创 2021-01-09 16:57:45 · 741 阅读 · 0 评论