Apache Kafka笔记(二):Topics,Partitions and Brokers

本文详细介绍了Apache Kafka的Topic、Partition和Replication Factor。Topic是消息分类的逻辑概念,存储为日志形式。Partition是Topic的最小逻辑单元,每个Partition必须在单个Broker上完整存储。Replication Factor用于冗余消息,提高容错性。过多的Partition可能导致Zookeeper成为性能瓶颈,而过多的复制会占用更多磁盘空间。
摘要由CSDN通过智能技术生成

Kafka Topic

  上篇笔记提到,Topic是消息的目录,用于分类消息的逻辑上的概念,在物理上,它的存储表现为日志(log)形式。
  这里写图片描述
  Producer指定消息发布到指定Topic,一个Topic可能由多个Broker维持,并且同一个Broker可能维持多个Topic,Consumer根据订阅的Topic到对应的Broker上去读取数据。这里可能会有疑问,Topic和具体的Broker之间的对应关系怎么维护?读写请求如何转发到具体Broker上去?下文关于Partitions会描述整个订阅发布过程。
  这里写图片描述
  Producer每发送一个消息都会追加到Topic队列的最后,按照时间排序,不能插队,也不能修改之前的消息,一个Topic可以同时被多个Consumer同时消费,并且可以重复消费。
  

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值