1. 背景
神经网络有很多算法,其中最著名的算法应该是BP算法。
2. 多层向前神经网络
1.BP算法被使用中在多层向前神经网络上。
1.1 通过迭代性来处理训练集中的实例。
1.2 对比经过神经网络后输入层预测值与真实值之间
1.3 反方向来最小化误差来更新每个连接的权重
1.4 终止条件:权重的更新低于某个阈值、预测的错误率低于某个阈值、达到预设一定循环次数
2 .多层向前神经网络组成
输入层、隐藏层、输出层
- 每层由单元组成或神经单元组成
- 隐藏层的个数可以是任意个,输入和输出只有一层。
- 经过权重节点传入下一层,一层的输出是下一层的输入。
- 作为多层向前神经网络,理论上,如果有足够多的隐藏层和足够大的训练集,可以模拟出任何方程。
3. 设计神经网络
3.1 使用神经网络训练之前,必须确定神经网络的层数,以及每层单元的个数。
3.2 特征向量在被传入输入层时通常被先标准化到0和1之间(为了加速学习过程)
3.3 没有明确的规则来设计最好有多少个隐藏层
根据实验测试和误差,以及准确来实验并改进。
4. 交叉验证
正向例子:根据下面的图片可以很好的理解前向传播
神经元6输出是0.474.
反向计算公式:
计算误差和更新权重.