原题链接:
我的思路:
这是一道简单题,但看题目我们可以直观的想到用 for 循环暴力求解
#include<stdio.h>
int main(){
int n;
double sum = 0;
scanf("%d", &n);
double nums[n];
for(int i = 0; i < n; i++){
scanf("%lf", &nums[i]);
}
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
for(int k = i; k <= j; k++){
sum += nums[k];
}
}
}
printf("%.2lf", sum);
return 0;
}
但注意这是本题的坑点,时间限制!
我们重新寻找规律,可以发现
0.1
0.1 + 0.2
0.1 + 0.2 + 0.3
0.1 + 0.2 + 0.3 + 0.4
0.2
0.2 + 0.3
0.2 + 0.3 + 0.4
0.3
0.3 + 0.4
0.4
每个数在整个求和过程中出现的次数 = 它的位置 * 从它开始后面剩余的数字个数(包括自己)
例如:
0.1 出现的次数 = 1(第 1 个)* 4(包括自己还剩 4 个数)
0.2 出现的次数 = 2(第 2 个)* 3(包括自己还剩 3 个数)
所以按照此规律就可以列出式子快速求解
#include<stdio.h>
int main(){
int n;
double sum = 0;
scanf("%d", &n);
double nums[n];
for(int i = 0; i < n; i++){
scanf("%lf", &nums[i]);
}
for (int i = 0; i < n; i++){
sum += nums[i] * (i + 1) * (n - i);
}
printf("%.2lf", sum);
return 0;
}
注意: 对于有时间限制的题目,尽量使用 C/C++ 求解,可以从语言本身提高速度