机器学习
文章平均质量分 54
spritezhong
这个作者很懒,什么都没留下…
展开
-
机器学习-基于Logistic回归和Sigmoid函数的分类
Logistic回归1.先给出Sigmoid函数由这个函数生成的曲线称为Sigmoid曲线对于二元分类,符合伯努利分布(the Bernoulli distribution, 又称两点分布,0-1分布),因为二元分类的输出一定是0或1,典型的伯努利实验。所以:由最大似然函数可知两边同时取对数:因为求似然函数的最大值,所以采用梯度上原创 2016-05-11 15:30:51 · 5035 阅读 · 0 评论 -
仿射函数
知识点补漏:1.仿射函数和线性函数的区别:简单来说仿射变换就是线性变化加上一个平移。知乎上看到的一个很好的解释:搬---作者:Cascade链接:https://www.zhihu.com/question/20666664/answer/15790507来源:知乎著作权归作者所有,转载请联系作者获得授权。以下内容仅涉及图形变换,未考虑更为抽象的概念。为了方转载 2016-12-14 21:18:11 · 12494 阅读 · 0 评论 -
GBDT那些事
看完GBDT详解,才发现GBDT这四个 词已经完全概括了这个算法的思想,Gradient是核心关键词,算法的目的是减少残差,采取的策略是在残差减少的梯度方向上建立新的模型。算法伪代码如下图: 由算法流程图,可以清晰地发现一、起初,先获得loss的初始值,这里的loss可以是Table10.2中的多个标准,对于每一种loss得到的梯度表达式也不一样。二、下面的原创 2016-12-22 17:23:09 · 380 阅读 · 0 评论 -
SVM总结
SVM总结在学习机器学习的常用算法中,在SVM上花费了大量的时间,今天写个知识点总结吧! SVM包括:线性可分向量机、线性支持向量机和非线性支持向量机。线性可分向量机:顾名思义,构建它的条件是训练数据线性可分,学习策略是最大间隔法。可以表示为凸二次优化规划问题,其原始最优化问题为 minw,b12||w||2min_{w,b} \frac{1}{2} ||w|| ^{2} s.t. yi(原创 2016-12-27 11:09:06 · 460 阅读 · 0 评论 -
python 读写csv文件(一)
csvfile=open(filepath,'w'),在python2版本中可以用file()函数打开writer=csv.writer(csvfile)第二个参数表示写入的模式,几种常见的模式参数常用值模式参数常用值值模式'r'读模式‘w’写模式‘a’追加模式‘b'’二进制模式‘+原创 2016-10-10 09:47:33 · 658 阅读 · 0 评论 -
win10安装protobuf for python
背景:最近在写一个python的项目时,需要用到protobuf数据结构,本人的python环境是python3.5。前提准备:在protobuf下载地址 下载 protobuf-python-3.5.1.zip和protoc-3.5.1-win32.zip并解压。1. 首先把protoc-3.5.1-win32文件夹下面的protoc.exe移至protobuf-python-3.5.1/sr...原创 2018-04-08 10:56:53 · 5115 阅读 · 1 评论 -
腾讯angel中实现的GBDT解析
看了论文《TencentBoost: A Gradient Boosting Tree System with Parameter Server》,主要从以下三个方面阐述论文思想:一 ,woker端的工作(其中有一个节点是leader worker主要负责sample features,合并梯度图): 1.每个worker根据分配到的数据,统计部分特征的分位图,然后把统计的分位图Push到s...原创 2018-04-23 21:01:37 · 1182 阅读 · 1 评论