已知f(x)为偶函数,g(x)为奇函数

一道高中函数题 !

已知f(x)为偶函数,g(x)为奇函数,且f(x) + g(x) = x^2 - x + 1,求f(x)和g(x)的解析式。
希望高手能解答的详细些,我没有思路!
悬赏分:5 - 解决时间:2009-10-24 13:21
;------------------------------------------------------
最佳答案:

先设:h(x) = f(x) + g(x)

也即:h(x) = x^2 - x + 1

那么:h(-x) = x^2 + x + 1

利用已知条件,应有:

   h(-x) = f(-x) + g(-x) = f(x) - g(x)

可以导出:f(x) = [h(x) + h(-x)] / 2 = x^2 + 1

同理导出:g(x) = [h(x) - h(-x)] / 2 = - x

完。
;------------------------------------------------------
回答者:做而论道 - 八级   2009-10-24 12:39
提问者对于答案的评价:3Q
原题网址:http://zhidao.baidu.com/question/122700210.html
;------------------------------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值