给定一副牌,每张牌上都写着一个整数。
此时,你需要选定一个数字 X,使我们可以将整副牌按下述规则分成 1 组或更多组:
每组都有 X 张牌。
组内所有的牌上都写着相同的整数。
仅当你可选的 X >= 2 时返回 true。
示例 1:
输入:[1,2,3,4,4,3,2,1]
输出:true
解释:可行的分组是 [1,1],[2,2],[3,3],[4,4]
示例 2:
输入:[1,1,1,2,2,2,3,3]
输出:false
解释:没有满足要求的分组。
示例 3:
输入:[1]
输出:false
解释:没有满足要求的分组。
示例 4:
输入:[1,1]
输出:true
解释:可行的分组是 [1,1]
示例 5:
输入:[1,1,2,2,2,2]
输出:true
解释:可行的分组是 [1,1],[2,2],[2,2]
提示:
1 <= deck.length <= 10000
0 <= deck[i] < 10000
思路
*计算所有卡牌出现的次数
*计算卡牌的次数是否有公约数,有则返回true,否返回false,不包含1
代码
public boolean hasGroupsSizeX(int[] deck) {
if(deck.length<=1) {
return false;
}
HashMap<Integer, Integer> map = new HashMap<>();
boolean isf = true;
for(int i=0;i<deck.length;i++) {
if(map.get(deck[i])!=null) {
map.put(deck[i], map.get(deck[i])+1);
}else {
map.put(deck[i],1);
}
}
Iterator iter = map.entrySet().iterator();
int gcd=0;
while (iter.hasNext()) {
Map.Entry entry = (Map.Entry) iter.next();
int val = (int) entry.getValue();
if(gcd==0)gcd=val;
gcd = GCD(gcd,val);
}
if(gcd==1)isf=false;
return isf;
}
//求两数之间的最大公约数
public int GCD(int a,int b){
if(a>=b) return a%b!=0?GCD(b,a%b):b;
else return b%a!=0?GCD(a,b%a):a;
}
一些测试数据:
System.out.println(hasGroupsSizeX(new int[] {1}));//false
System.out.println(hasGroupsSizeX(new int[] {1,1}));//true
System.out.println(hasGroupsSizeX(new int[] {1,1,2,2,2,2}));//true
System.out.println(hasGroupsSizeX(new int[] {1,1,2,2,3,3,4,4}));//true
System.out.println(hasGroupsSizeX(new int[] {1,1,1,2,2,2,3,3}));//false
System.out.println(hasGroupsSizeX(new int[] {0,0,0,1,1,1,2,2,2}));//true
System.out.println(hasGroupsSizeX(new int[] {1,1,1,1,2,2,2,2,2,2}));//true
System.out.println(hasGroupsSizeX(new int[] {0,0,0,0,0,0,0,1,2,3,3,3,4,5,6}));//false
System.out.println(hasGroupsSizeX(new int[] {0,0,0,1,1,1,1,1,1,2,2,2,3,3,3}));//true
System.out.println(hasGroupsSizeX(new int[] {0,0,0,0,0,1,1,2,3,4}));//false
System.out.println(hasGroupsSizeX(new int[] {0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3}));//true
System.out.println(hasGroupsSizeX(new int[] {0,0,0,0,0,0,0,1,2,3,3,3,4,5,6}));//false