目录
题目链接: 力扣
题目描述
设计和实现一个 LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:
(1)LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存;
(2)int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
(3)void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
题目分析
根据题目描述,已经有了比较清晰的思路,为了执行 put(int key, int value)、get(int key) 方法,需要哈希表与链表配合:
- 双向链表:按照被使用的顺序存储了这些键值对,靠近头部的键值对是最近使用的,而靠近尾部的键值对是最久未使用的;
- 哈希映射(HashMap):通过缓存数据的键映射到其在双向链表中的位置。
代码实现如下:
public class LRUCache {
// 双向链表按照被使用的顺序存储了这些键值对,靠近头部的键值对是最近使用的,而靠近尾部的键值对是最久未使用的
public class DLinkedNode {
int key;
int value;
DLinkedNode prev;
DLinkedNode next;
public DLinkedNode() {
}
public DLinkedNode(int _key, int _value) {
key = _key;
value = _value;
}
}
// 靠近头部的键值对是最近使用的,而靠近尾部的键值对是最久未使用的
private DLinkedNode head, tail;
// 容量
private int capacity;
// 当前链表长度
private int size;
// 缓存数据的键映射到其在双向链表中的位置
private Map<Integer, DLinkedNode> cache = new HashMap<Integer, DLinkedNode>();
public LRUCache(int capacity) {
this.size = 0;
this.capacity = capacity;
// 使用伪头部和伪尾部节点
head = new DLinkedNode();
tail = new DLinkedNode();
head.next = tail;
tail.prev = head;
}
public int get(int key) {
DLinkedNode node = cache.get(key);
if (node == null) {
return -1;
}
// key 存在,移动到链表头部
moveToHead(node);
return node.value;
}
/**
* 如果关键字已经存在,则变更其数据值;
* 如果关键字不存在,则插入该组「关键字-值」。
* 当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
*
* @param key
* @param value
*/
public void put(int key, int value) {
DLinkedNode node = cache.get(key);
if (node != null) {
// 关键字已经存在,则变更其数据值;
node.value = value;
moveToHead(node);
} else {
// 关键字不存在,则插入该组「关键字-值」。
DLinkedNode newNode = new DLinkedNode(key, value);
cache.put(key, newNode);
addToHead(newNode);
size++;
// 当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值
if (size > capacity) {
DLinkedNode tail = removeTail();
cache.remove(tail.key);
size--;
}
}
}
private void moveToHead(DLinkedNode node) {
removeNode(node);
addToHead(node);
}
/**
* 最近使用的节点 添加 到链表头部
*
* @param node
*/
private void addToHead(DLinkedNode node) {
node.prev = head;
node.next = head.next;
head.next.prev = node;
head.next = node;
}
/**
* 删除最末节点
*
* @return
*/
private DLinkedNode removeTail() {
DLinkedNode res = tail.prev;
removeNode(res);
return res;
}
private void removeNode(DLinkedNode node){
node.prev.next = node.next;
node.next.prev = node.prev;
}
}
扩展,Java中的 LinkedHashMap 实现
public class LRUCache extends LinkedHashMap<Integer, Integer> {
// 容量
private int capacity;
public LRUCache(int capacity) {
super(capacity, 0.75F, true);
this.capacity = capacity;
}
public int get(int key) {
return super.getOrDefault(key, -1);
}
public void put(int key, int value) {
super.put(key, value);
}
@Override
protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
return size() > capacity;
}
}
多谢各位看官,不如来个三连吖~~