hdu6025 Coprime Sequence(2017女生赛)

Problem Description
Do you know what is called ``Coprime Sequence''? That is a sequence consists of n positive integers, and the GCD (Greatest Common Divisor) of them is equal to 1.
``Coprime Sequence'' is easy to find because of its restriction. But we can try to maximize the GCD of these integers by removing exactly one integer. Now given a sequence, please maximize the GCD of its elements.
 
Input
The first line of the input contains an integer T(1T10) , denoting the number of test cases.
In each test case, there is an integer n(3n100000) in the first line, denoting the number of integers in the sequence.
Then the following line consists of n integers a1,a2,...,an(1ai109) , denoting the elements in the sequence.
 
Output
For each test case, print a single line containing a single integer, denoting the maximum GCD.
 
Sample Input
  
  
3 3 1 1 1 5 2 2 2 3 2 4 1 2 4 8
 
Sample Output
  
  
1 2 2
 
Source

题意:给你n个数字,你可以任意删除一个数字使得剩下的数字的gcd最大,输出最后最大的gcd;
思路:我的思路太暴力,就是正反各一遍特判;gcd后的值会更小或者相等、1和任意数的gcd的值都是1;
           另外一种思路就是:正反各存一下起始位置到这个位置的gcd值,然后枚举删点,O(n)的复杂度;

第一种思路对应的代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100005;

int a[maxn];
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int n;
        scanf("%d",&n);
        for(int i=0; i<n; i++)
            scanf("%d",&a[i]);

        sort(a,a+n);
        int flag=0;
        int v1=a[0],v=0;
        for(int i=1; i<n; i++)
        {
            if(v1==1&&flag==0&&i==1) //特判第一位为1否;
            {
                flag=1;
                v1=a[i];
                continue;
            }
            v=__gcd(a[i],v1);
            if(i==n-1&&flag==0)  //特判最后一位;
            {
                if(v<v1) v=v1;
                flag=1;
                break;
            }
            if((v==1)&&flag==0)  //特判结果为1
            {
                flag=1;
                continue;
            }
            else if(__gcd(v1,a[i])<__gcd(v1,a[i+1])&&i+1<n&&flag==0)
            {
                flag=1;
                continue;
            }
        }
        v1=v;
        int ans=v;
//        printf("------------%d\n",ans);

        v1=a[n-1],v=0;
        flag=0;
        for(int i=n-2; i>=0; i--)
        {
            if(v1==1&&flag==0&&i==n-2)//
            {
                flag=1,v1=a[i];
                continue;
            }
            v=__gcd(a[i],v1);
            if(i==0&&flag==0) //
            {
                if(v<v1) v=v1;
                flag=1;
                break;
            }
            if(v==1&&flag==0) //
            {
                flag=1;
                continue;
            }
            else if(__gcd(a[i],v1)<__gcd(a[i-1],v1)&&i-1>=0&&flag==0)
            {
                flag=1;
                continue;
            }
            v1=v;

        }
//        printf("---------------%d\n",v);
        ans=max(ans,v);
        printf("%d\n",ans);
    }
    return 0;
}

第二种思路的代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100005;
typedef long long ll;
const ll tomod=1e9+7;

int a[maxn];
int gcd1[maxn],gcd2[maxn];//正着来一遍,反着来一遍;
int main()
{
    int T,n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        gcd1[0]=gcd2[n+1]=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            if(i==1) gcd1[i]=a[i];
            else  gcd1[i]=__gcd(gcd1[i-1],a[i]);
        }

        for(int i=n;i>=1;i--)
        {
            if(i==n) gcd2[i]=a[i];
            else gcd2[i]=__gcd(gcd2[i+1],a[i]);
        }

        int ans=max(gcd1[n],gcd2[1]);
        for(int i=1;i<=n;i++)
        {
            ans=max(ans,__gcd(gcd1[i-1],gcd2[i+1]));
        }
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值