文章目录
序言
- 总结逻辑回归模型,LR模型实例
1. 线性回归
- 一元线性回归: y = a + b x y=a+bx y=a+bx
- 多元线性回归: z = h ( x ) = w 0 x 0 + w 1 x 1 + w 2 x 2 + . . . + w n x n = W T X z = h(x) = w_{0}x_{0} + w_{1}x_{1}+ w_{2}x_{2} +...+w_{n}x_{n} = W^{T} X z=h(x)=w0x0+w1x1+w2x2+...+wnxn=WTX
- 每个样本 n n n个特征,每个特征 x i x_{i} xi都有对应的权值 w i w_{i} wi
- x 0 = 1 x_{0} = 1 x0=1, w 0 w_{0} w0其实是偏置量,为了公式简洁和方便计算
- 不管是一元线性回归分析还是多元线性回归分析,都是线性回归分析
2. 逻辑回归
2.1 引入逻辑回归的原因
- 在一些特别的情况下, 线性回归可以用于分类问题, 找到分类的阈值, 但是一旦样本点出现分布不均匀, 会导致线性方程的参数产生偏移, 造成严重的误差
- 另一方面, 我们希望分类模型的输出是0,1即可, 线性回归的值域在 ( − ∞ , + ∞ ) (-\infty , +\infty ) (−∞,+∞), 是连续的, 不满足我们的要求
2.2 逻辑回归
- 逻辑回归与线性回归都是广义线性模型, 线性回归假设Y|X服从高斯分布, 逻辑回归假设Y|X服从伯努利分布
- 逻辑回归以线性回归为理论支持, 通过逻辑函数(Sigmoid函数)引入非线性因素。逻辑回归的思路就是将线性回归的结果z通过逻辑函数g(z)从 ( − ∞ , + ∞ ) (-\infty , +\infty ) (−∞,+∞)映射到(0,1), 再通过决策边界建立与分类的概率联系
- 逻辑回归虽然带有"回归"二字, 但却是一种分类模型, 最常见的是用于处理二分类问题
- 逻辑回归假设数据服从伯努利分布(二项分布,0-1分布),通过极大似然估计的方法,运用梯度下降法求解参数,来达到将数据二分类的目的
2.3 逻辑回归的应用
- 逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学
- 逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性
- 逻辑回归模型现在同样是很多分类算法的基础组件,其模型清晰有对应的概率学理论基础,是理解数据的好工具
3. 逻辑函数
3.1 sigmoid函数
g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z} } g(z)=1+e−z1

3.2 sigmoid函数的性质
- 任意输入压缩到0-1之间
- 任意阶可导, 函数在z = 0处的导数最大
- 函数满足关系: g ( − z ) = 1 − g ( z ) g(-z) = 1 - g(z) g(−z)=1−g(z)
- 导函数满足关系: ∂ g ( z ) ∂ z = g ( z ) ( 1 − g ( z ) ) \frac{\partial g(z)}{\partial z} = g(z)(1-g(z)) ∂z∂g(z)=g(z)(1−g(z))
- 函数两边梯度趋于饱和, 容易导致梯度消失
- z=5时,g(z)已经在0.99以上
3.3 决策边界
- 将线性回归结果带入g(z)函数, 得到0~1之间的概率值, 如果认为p > 0.5属于一类, 否则是另一类, 那么0.5就是决策边界
3.4 对数几率
- 逻辑函数做如下抓换
g ( z ) = 1 1 + e − z ⇒ g ( z ) ∗ ( 1 + e − z ) = 1 ⇒ e − z = 1 g ( z ) − 1 ⇒ − z = l n ( 1 − g ( z ) g ( z ) ) ⇒ z = l n ( g ( z ) 1 − g ( z ) ) g(z) = \frac{1}{1+e^{-z} } \Rightarrow g(z)*(1+e^{-z} )=1 \Rightarrow e^{-z} = \frac{1}{g(z)}-1 \Rightarrow -z=ln(\frac{1-g(z)}{g(z)} ) \Rightarrow z=ln(\frac{g(z)}{1-g(z)} ) g(z)=1+e−z1⇒g(z)∗(1+e−z)=1⇒e−z=g(z)1−1⇒−z=ln(g(z)1−g(z))⇒z=ln(1−g(z)g(z))
- 上式中, z = h ( x ) = θ T X = W T X z = h(x) = \theta ^{T} X = W^{T}X z=h(x)=θTX=WTX
- 如果将逻辑回归结果 g ( z ) g(z) g(z)看成某个事件发生的概率,事件不发生的概率就是 1 − g ( z ) 1 - g(z) 1−g(z),两者比值称之为几率odds
- 令 g ( z ) =