序言
排序算法大体可分为两种:
比较排序:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序等
非比较排序:基数排序,计数排序,桶排序等
本文介绍非比较排序算法中的基数排序算法。
基数排序(Radix Sort)
原理:
以整型基数排序为例,整型10进制数按位数切割成不同的数字,然后从低位到高位每个位数分别比较,每次比较完进行排序,直到整个数组有序。
由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。
动态示意图:http://www.cs.usfca.edu/~galles/visualization/RadixSort.html
步骤:算法主要分为两个过程,分配 + 收集
将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。
分配:从低位开始,根据位值(0~9)分别放到0~9号桶中
- 比如26,个位为6,放入6号桶中
收集:再将0~9号桶中的数据按顺序(升序或降序)放到数组中
重复分配和收集过程,从个位到最高位,直到排好序为止
注:为何这样就能完成排序?
答:假设高位相同,次高位已按顺序排好,因此保证了顺序。要点
桶空间
- 假设基数为r,数组元素个数为n,桶空间是一个r × n的空间
分配
收集
时间复杂度分析:
平均时间复杂度: O(d(n + r)) = O(n * d)
- 因为每位每次排序时:
- 分配的时间开销为O(n),n个数需要处理
- 收集的时间开销为O(r),0~r-1大小的数需要处理
- d位比较下来的时间开销为O(d(n + r))
- 因为每位每次排序时:
最好情况:O(d(n + r))
最坏情况:O(d(n + r))
空间复杂度分析:O(rd + n)
评价:
稳定排序
时间复杂度低,需要额外的辅助空间
Code Example1:
/**************************************
* 参数:
r:基数,比如r = 10表示十进制划分,即表示0~9的序列
d:位数,十进制时即digit有多少位
***************************************/
#include <stdio.h>
#include <stdlib.h> //for malloc()
#include <string.h> //for memset()
/* 获取一个十进制数的第pos位 */
int GetPosInNum(int num, int pos)
{
int temp = 1;
for (int i = 0; i < pos - 1; i++) //整除数值
temp *= 10;
return (num / temp) % 10; //取余
}
/* 基数排序 */
int RadixSort(int *array, int n, int r, int d)
{
//申请序列存储空间
int *radixArray[r];
for (int i = 0; i < r; i++)
{
radixArray[i] = (int *)malloc(sizeof(int) * (n + 1)); //n + 1,其中一个元素用来计数
memset(radixArray[i], 0, n + 1);
radixArray[i][0] = 0; //用于记录这个digit为这个取值的数组元素的个数,digit落在0~r-1
}
//位比较排序
for (int pos = 0; pos < d; pos++)
{
//分配过程:处理n个元素
for (int j = 0; j < n; j++)
{
int num = GetPosInNum(array[j], pos);
int index = ++radixArray[num][0]; //统计落在这个取值的元素个数
radixArray[num][index] = array[j];
}
//收集过程:从r个空间取数
for (int k = 0, cnt = 0; k < r; k++)
{
for (int ele = 1; ele <= radixArray[k][0]; ele++)
{
array[cnt++] = radixArray[k][ele];
}
radixArray[k][0] = 0; //复位用于重新计数
}
}
return 0;
}
int main()
{
int a[9] = {8, 4, 2, 3, 1, 6, 9, 0, 7};
//函数调用
int r = 10, d = 10; //基数为10,位数为10
RadixSort(a, 9, r, d);
//数组输出
for (int j = 0; j < 9; j++)
{
printf("%d ", a[j]);
}
printf("\n");
}
Code Example2:
在基数排序中使用了计数排序,计数排序详见我的另一篇博客:http://blog.csdn.net/baidu_35692628/article/details/76736208
/**************************************
功能:使用计数排序实现基数排序
参数:
pos:第pos位
n:数组元素个数
d:计数数组需要使用的数组元素最大数值
**************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
const int d = 3; //待排序的元素为三位数及以下
const int r = 10; //基数为10,每一位的数字都是[0,9]内的整数
/* 获取元素的第pos位数字 */
int GetDigit(int ele, int pos)
{
int temp = 1;
for (int i = 0; i < pos - 1; i++)
temp *= 10;
return (ele / temp) % 10;
}
/* 计数排序:对数组元素的第pos位构成的数组进行计数排序 */
void CountingSort(int A[], int n, int pos)
{
//计数数组初始化
int C[r];
for (int i = 0; i < r; i++)
{
C[i] = 0;
}
//统计第pos位构成的数组各个元素出现次数
for (int i = 0; i < n; i++)
{
C[GetDigit(A[i], pos)]++;
}
//计数累加
for (int i = 1; i < r; i++)
{
C[i] = C[i] + C[i - 1];
}
//暂存数组赋值:从后往前赋值,保证排序稳定性
int *temp = (int*)malloc(n * sizeof(int));
memset(temp, 0, n);
for (int i = n - 1; i >= 0; i--)
{
temp[C[GetDigit(A[i], pos)] - 1] = A[i];
C[GetDigit(A[i], pos)]--;
}
//数组赋值
for (int i = 0; i < n; i++)
{
A[i] = temp[i];
}
free(temp);
}
/* 最低位优先基数排序 */
void RadixSort(int A[], int n)
{
for (int digit = 1; digit <= d; digit++) //从个位到十位到百位
CountingSort(A, n, digit); //对数组A的第digit位构成的数组进行计数排序
}
int main()
{
int A[] = { 20, 90, 64, 289, 998, 365, 852, 123, 789, 456 };
int n = sizeof(A) / sizeof(int);
//函数调用,结果输出
RadixSort(A, n);
printf("排序结果:");
for (int i = 0; i < n; i++)
{
printf("%d ", A[i]);
}
printf("\n");
return 0;
}
Acknowledgements:
http://blog.csdn.net/han_xiaoyang/article/details/12163251#t139
http://blog.csdn.net/hitwhylz/article/details/9970451
http://blog.csdn.net/FightLei/article/details/52586814
http://www.cnblogs.com/xiaochun126/p/5086037.html
http://www.cnblogs.com/eniac12/p/5332117.html(推荐)
2017.08.06