Description
奶牛们从世界各地聚集起来参加一场大型聚会。总共有N头奶牛,N?1对奶牛互为朋友。每头奶牛都可以通过一些朋友关系认识其他每头奶牛。她们玩得很开心,但是现在到了她们应当离开的时间了,她们会一个接一个地离开。她们想要以某种顺序离开,使得只要至少还有两头奶牛尚未离开,所有尚未离开的奶牛都还有没有离开的朋友。此外,由于行李寄存的因素,有M对奶牛(ai,bi)必须满足奶牛ai要比奶牛bi先离开。注意奶牛ai和奶牛bi可能是朋友,也可能不是朋友。帮助奶牛们求出,对于每一头奶牛,她是否可以成为最后一头离开的奶牛。可能会发生不存在满足上述要求的奶牛离开顺序的情况。
Solution
显然,要令一个点最后被删,以它为根,必须要从叶子开始往上删,也就是没有父亲连向儿子的关系。虽然给出了 m m m条边,但是有很多间接的边,所以没法直接搞。但是有一个很重要的发现,就是如果一个点有边连向它的两棵子树,那么无论如何都是不合法的,有了这个边数直接就到 O ( n ) O(n) O(n)级别了,找出这些边就行了。
Code
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pa pair<int,int>
const int Maxn=100010;
const int inf=2147483647;
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x*f;
}
int n,m,deg[Maxn],in[Maxn],out[Maxn],dfn=0,a[Maxn],la=0,mn[Maxn],mx[Maxn],c[Maxn],d[Maxn];
struct Edge{int y,next;}e[Maxn<<1];
int len=0,last[Maxn];
void ins(int x,int y)
{
int t=++len;
e[t].y=y;e[t].next=last[x];last[x]=t;
}
void dfs(int x,int fa)
{
in[x]=++dfn;
for(int i=last[x];i;i=e[i].next)
{
int y=e[i].y;
if(y==fa)continue;
dfs(y,x);
}out[x]=dfn;
}
vector<int>h[Maxn];
void print(){for(int i=1;i<=n;i++)puts("0");}
int _max(int x,int y)
{
if(!x||!y)return x+y;
return((in[x]>in[y])?x:y);
}
int _min(int x,int y)
{
if(!x||!y)return x+y;
return((in[x]<in[y])?x:y);
}
bool pd(int x,int y){return(in[x]<=in[y]&&in[y]<=out[x]);}
void add(int l,int r){if(l>r)return;c[l]++;if(r<n)c[r+1]--;}
int main()
{
n=read(),m=read();
for(int i=1;i<n;i++)
{
int x=read(),y=read();
ins(x,y),ins(y,x);
}
dfs(1,0);
for(int i=1;i<=m;i++)
{
int x=read(),y=read();
h[x].push_back(y);
}
queue<int>q;
for(int i=1;i<=n;i++)if(!deg[i])q.push(i);
while(!q.empty())
{
int x=q.front();q.pop();
a[++la]=x;
for(int i=0;i<h[x].size();i++)
{
int y=h[x][i];
deg[y]--;
if(!deg[y])q.push(y);
}
}
if(la!=n){print();return 0;}
for(int j=la;j;j--)
{
int x=a[j];
for(int i=0;i<h[x].size();i++)
{
int y=h[x][i];
mn[x]=_min(mn[x],_min(mn[y],y));
mx[x]=_max(mx[x],_max(mx[y],y));
}
if(mn[x])
{
if(!pd(x,mn[x])&&!pd(x,mx[x]))add(in[x],out[x]);
else if(!pd(x,mn[x])||!pd(x,mx[x])){print();return 0;}
for(int i=last[x];i;i=e[i].next)
{
int y=e[i].y;
if(!pd(x,y))continue;
if(pd(y,mn[x])&&pd(y,mx[x]))add(1,in[y]-1),add(out[y]+1,n);
else if(pd(y,mn[x])||pd(y,mx[x])){print();return 0;}
}
}
}
for(int i=2;i<=n;i++)c[i]+=c[i-1];
for(int i=1;i<=n;i++)d[i]=c[in[i]];
for(int i=1;i<=n;i++)if(d[i])puts("0");else puts("1");
}