一种基于改进的五帧帧差和混合高斯模型相融合的前景提取算法

针对监控视频前景提取的挑战,本文提出了一种结合改进五帧帧差法和混合高斯背景建模的算法。通过改进五帧帧差法减少空洞和双影,利用混合高斯模型处理光照变化和背景扰动。实验证明,该算法在轮廓清晰度、完整性和鲁棒性上表现出优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       对一个不包含动态背景的稳定拍摄的监控视频构造提取前景目标的数学模型算法。视频中的前景提取一直是图像处理领域的研究热点,也是目标跟踪与识别的基础。目前光流法、背景差分法、帧差分法是前景提前的主流算法.光流法其计算量大,对噪声比较敏感;背景差分法需要有比较稳健的背景模型支撑,对背景的扰动比较敏感;帧间差分法难以获取目标的完整区域,容易出现空洞和双影现象。针对以上问题,本文提出了一种基于改进的五帧帧差和混合高斯模型相融合的前景提取算法。通过改进的五帧帧差法提取目标,同时利用混合高斯背景建模进行背景更新,将中间帧图像与背景图像做差,提取出目标,通过运动策略分析,将两个检测出的目标进行“与”运算,再通过连通性检测和形态学处理得到最终的运动目标.

 

1 改进的五帧帧差法

           帧间差分法是一种通过对视频图像序列的连续两帧图像做差分运算获取运动目标轮廓的方法。当监控场景中出现异常目标运动时,相邻两帧图像之间会出现较为明显的差别,两帧相减,求得图像对应位置像素值差的绝对值,判断其是否大于某一阈值,进而分析视频或图像序列的物体运动特性。帧差分法能适应静态和动态背景,无需提取和更新背景,时间复杂度低,但容易出现空洞和双影现象。

本文改进了五帧帧差法其具体步骤主要有 5 步:

1)选取相邻的 5 帧图fk-2(x,y) , fk-1x,y , fk(x,y) , fk+1(x,y) , fk+2(x,y) 分别将其转为相应的灰度图像,然后都进行高斯滤波去除图像中的噪声,得到相应的 5 帧图像F

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值