1 前言
首选用背景差分法和形态学算法提取目标骨架,骨架提取经历九步:图像灰度化,背景差分法提取目标轮廓,使用CLAHE算法增强对比度,高斯滤波,Solel算子进行边缘检测,小波去噪,最大类间误差法二值化,形态学运算和中值滤波。然后用基于人体比例的方法初步判断跌倒情况,再用基于运动趋势的精准判断跌倒情况。算法总体效果可以,误检较少。
2跌倒检测算法流程
2.1灰度化
颜色可分为彩色和黑白。颜色中不包含任何的色彩成分,仅由白色和黑色组成的是黑白。在颜色模型RGB中,当R=G=B,那么颜色(R,G,B)则表示为一种黑白的颜色;其中R=G=B的值是灰度值,所以黑白色即灰度颜色。灰度与彩色之间是可以相互转化的,由灰度化转为彩色的称为伪彩色处理过程;由彩色转化为灰度的叫做灰度化处理过程。
相应地,数字图像可区分为灰度图像和彩色图像。通过伪彩色处理和灰度化处理,可以使伪彩色图像与灰度图像之间进行相互转化。
使彩色的R,G,B分量值相等的过程就是灰度化。灰度的级别只有256级,即灰度图像仅能表现256种颜色(灰度),主要是因为R,G,B的取值范围是0 ~ 255。
本算法灰度化的处理方法用平均值法:利用R,G,B的值求出平均值,即
平均值法可以形成相对比较柔和的灰度图像。
2.2目标提取算法
背景差分法别名背景减法,背景差分法的原理是将当前的图像与背景图像进行差分来得到目标区域,这种方法能很好的识别和提取运动目标,是目前运动分割中最常用的一种方法。但是需要构建一幅背景图像,这幅背景图像必须不含要检测的目标或其他不需要检测目标,并且应该能不断的更新来分辨当前背景的变化。
本设计背景差分法实现步骤:
通过这次毕业设计的摸索,可将背景差分法的实现步骤总结如下:
(1)进行图像的预处理:主要包括对图像进行灰度化以及滤波。
(2)目标区域提取:将 N帧图像与N+1帧图像相减,将 N+1帧图像与N帧图像相减,再将两相减后图像相加,便得到目标区域如图2所示,这样做的目的是增加目标区域的对比度。
图2 目标区域提取图
2.3目标分割算法
(1)使用CLAHE算法增强对比度
CLAHE同普通的自适应直方图均衡不同的地方主要是其对比度限幅。这个特性也可以应用到全局直方图均衡化中,即构成所谓的限制对比度直方图均衡(CLHE),但这在实际中很少