【题目】
有一个整型数组arr和一个大小为w的窗口,从数组的最左边滑到最右边,窗口每次向右边滑一个位置。
例如 数组为{4,3,5,4,3,3,6,7},窗口大小为3时:最大值数组为{5,5,5,4,6,7}.
如果数组长度为n,窗口大小为w,则一共产生n-w+1个窗口的最大值
实现一个函数:
-输入:整型数组arr,窗口大小为w
-输出:一个长度为n-w+1的数组res,res[i]表示每一种窗口状态下的最大值。
【解答】
如果数组长度为N,窗口大小为w,复杂度O(N)的实现,首先生成双端队列qmax中存放arr数组中的下标
假设遍历到arr[i],qmax的放入规则为:
1>如果qmax为空,直接把下标i放进qmax,放入过程结束
2>如果qmax不为空,取出当前qmax队列存放的下标,假设为j
3>如果arr[j]>arr[i],直接把i放进qmax的队尾,放入过程结束
4>如果arr[j]<=arr[i],把j从qmax中弹出,继续qmax的放入规则
假设遍历到arr[i],qmax的弹出规则为:
如果qmax队头的下标等于i-w,说明当前qmax队头的下标已过期,弹出当前队头的下标即可。
import java.util.LinkedList;
public class getMaxWindow {
public int[] getMaxWindow(int[]arr,int w){
if(arr == null || w < 1 || arr.length < w){
return null;
}
LinkedList<Integer>qmax = new LinkedList<>();
int[] res = new int[arr.length-w+1];
int index=0;
for(int i = 0; i < arr.length; i++){
while(!qmax.isEmpty() && arr[qmax.peekLast()] <= arr[i]){
qmax.pollLast();
}
qmax.addLast(i);
if(qmax.peekFirst() == i - w){
qmax.pollFirst();
}
if(i >= w-1){
res[index++] = arr[qmax.peekFirst()];
}
}
return res;
}
}