Stratified Sampling Voxel Classification for Segmentation of Intraretinal and Subretinal Fluid in Lo

Stratified Sampling Voxel Classification for Segmentation of Intraretinal and Subretinal Fluid in Longitudinal Clinical OCT Data
翻译:纵向临床OCT数据中分层采样体素分类以分割视网膜内和视网膜下液

摘要:
3D-OCT量的自动三维视网膜液(称为有症状的渗出液相关性排列紊乱,称为SEAD)分割在改善新血管性年龄相关性黄斑变性(AMD)的管理方面引起了广泛关注。 SEAD分割在新血管性AMD的治疗中起着重要作用,但是由于SEAD大小,位置和形状的多样性很大,因此准确的分割具有挑战性。在这里,开发了一种新颖的基于体素分类的方法,该方法使用了依赖于分层的分层采样策略来解决SEAD检测中的类不平衡问题。该方法在10例接受抗VEGF治疗的患者的30次纵向3D OCT扫描中得到了验证。两名视网膜专家手动描绘了所有视网膜内和视网膜下液。留一人的评估得出的真实阳性率和真实阴性率分别为96%和0.16%。该方法显示了新血管AMD治疗的图像指导治疗的希望。

第一节引言

自1991年首次描述以来,光学相干断层扫描已成为越来越重要的成像技术,特别是对于人类视网膜的非侵入性成像[1],[2]。 OCT能够以微观分辨率对眼睛内部进行成像,从而使临床医生能够更好地理解眼睛,尤其是视网膜疾病[3] – [8]。
新血管或与年龄有关的渗出性黄斑变性(AMD)是AMD的一种发展形式,并且是发达国家中失明的最重要原因。 新生血管性AMD或脉络膜新生血管(CNV)的特征在于异常血管从脉络膜进入视网膜的生长以及相关的液体渗漏。 液体导致视力丧失,并最终破坏视网膜的正常结构。 基于抗血管内皮生长因子(Anti-VEGF)的药物已被证明是有效治疗CNV的药物,需要精确定量分布,大小和积液的数量[9] – [11]。
几个研究小组以前已经使用半自动或全自动方法解决了OCT图像中视网膜内和视网膜下液区域的检测,分割和定量问题。在2005年,Fernandez等人提出了一种使用可变形模型在2D OCT B扫描中描绘视网膜内和视网膜下液区域的方法。这种半自动方法在蛇的初始化过程中需要人为干预[10]。 Wikins等人提出了一种全自动方法,可以在单独的2D B扫描中分割收缩期黄斑水肿中的视网膜内收缩液。视网膜内液通过阈值和边界描记法的组合进行分割[12]。 Zheng等人提出了一种半自动方法来分割单个2D OCT B扫描中的视网膜内和视网膜下液[13]。包括粗分割和细分割步骤的四步过程被应用于生成目标区域候选。然后,专家点击每个所需的候选者,然后可以进行定量分析。 Chen等人在2012年提出了一种全自动且真实的3D方法来分割与流体相关的异常[11]。开发了一种组合的图搜索/图切割方法,以同时分割上层视网膜表面,下层视网膜表面以及两层之间的一个或多个流体填充区域。
上述方法[11]对大型,轮廓分明的流体囊产生了良好的分割效果。 但是,它对较小的流体区域的敏感度相对较低,较小的流体区域的边界更加模糊,位置也更加不可预测。 它还会检测到亚RPE沉积物或明亮的玻璃疣作为假阳性。 正如他们的论文所报道的那样,这些问题很难解决,因为它很大程度上取决于图形的构造。 然而,增加敏感性和特异性对于真实的临床数据非常重要,但是具有挑战性,因为患者的疾病严重程度差异很大。
我们将OCT扫描中SEAD的检测公式化为类不平衡问题,这意味着与其他类相比,其中一个类由少量病例代表[14]。 在分类器要检测罕见但很重要的情况下(在我们的应用中为SEAD)的应用中,会出现高度不平衡的情况。 班级失衡会严重削弱现有学习和分类系统的性能[14],[15]。 在SEAD检测的情况下,由于SEAD显示某些依赖于层的特性,这使问题进一步复杂化,这意味着SEAD更有可能出现在某些层中,而不太可能出现在其他视网膜层中。
在此手稿中,我们提出了一种分类方法,该方法通过采用分层采样技术来利用SEAD的层相关性先验信息,以提高对实际临床OCT数据的检测灵敏度。 分层采样已在许多领域得到应用,并取得了良好的效果,包括遥感研究[16],[17]和大型植物社会学数据库中的数据分析[18],以解决类别不平衡问题,并取得了良好的效果。 我们的方法在一组来自不同疾病阶段的新血管AMD患者的纵向临床数据中得到了验证。

第二节实验方法

在这项研究中,分析了接受抗血管内皮生长因子(anti-VEGF)治疗的10位受试者的30种SD-OCT量(a set of 30 SD-OCT volumes from 10 subjects)。 这些患者接受了最初的12周标准抗VEGF治疗,然后继续进行了12个月的患者特异性治疗。 对于第一个标准的12周治疗,在第0、2、4、6、8、10和12周进行SD-OCT扫描,在特定于患者的治疗期间进行两次以上的扫描。
两名接受过研究金培训的视网膜专家使用iPad应用程序真理标记[19]分别检测并分割了原始图像切片中的所有视网膜内和视网膜下液区域。 由于作业的耗时属性,仅基线扫描(第0周,第一次扫描),2个月的跟踪扫描(第8周,中间扫描)和12个月的跟踪扫描(最后扫描) 用于这项研究。 在参加研究之前,应征得每个研究参与者的知情同意,以获取研究数据。 该研究方案已获得爱荷华大学机构审查委员会的批准,并符合《赫尔辛基宣言》的宗旨。
使用中心波长为1050 nm的Topcon 3D扫频光源OCT(Topcon Inc.,Paramus,NJ)进行扫描。 以中央凹为中心的扫描范围是6mm×6mm×2.3mm,视场角为45°。 体积大小为512×128×885体素,物理体素大小为11.7μm×46.9μm×2.7μm。 原始强度值为16位,并已归一化为[0,1]。

第三节 方法

在本节中,将详细介绍所提出的方法。 首先,必须执行预处理步骤以提高信噪比,然后进行11层分割。 然后,应用体素分类并提取各种三维特征,包括纹理,结构和位置信息。 尽管流体区域的形状,大小和位置非常不可预测,但我们注意到流体区域的某些层相关属性,并应用了层相关采样模型
预处理包括递归各向异性扩散滤波器和亮度曲线变换,以减少噪声并增强异常区域。
在这里插入图片描述
图 1
图像质量增强。左列显示来自同一主题的单个B扫描。右列显示整个体积的强度直方图。请注意,在(d),(f)和(h)中,强度0处的高峰值被裁剪,以便可以更好地查看其余直方图。 (a)对未处理的原始量进行一次B扫描。应用了perona和malik电导函数,并且梯度幅度阈值为2.0 [23]。 (b)原始图像的直方图。常规峰值是由扫描仪硬件引起的。 (c)在各向异性扩散滤波之后进行相同的B扫描。 (d)为(c)的灰度直方图。红线是应用于此直方图的亮度变换曲线(右侧的轴)。 (e)亮度曲线变换和随后的各向异性扩散滤镜之后的相同B扫描。(f)为(e)的灰度直方图。红线是应用于此直方图的亮度变换曲线(右侧的轴)。 (g)在第二次亮度曲线变换和随后的各向异性扩散滤镜之后进行相同的B扫描。在此最终图中,斑点噪声得到了抑制,同时层和SEAD的纹理信息得以保留。 (h)(g)的直方图。最终的直方图没有显示双峰分布,这意味着较低的分布(其中大多数是噪声像素)已被删除。
噪声是诸如超声和OCT之类的相干成像技术中的固有问题。 主要噪声源是散斑噪声,这是由组织内次分辨率变化所反射的波的随机干扰引起的。 因此,对于更长的波长,预期会有更多的斑点噪声。 斑点噪声很难消除,因为它与信号有关。 在过去的几十年中,已经开发了许多去噪技术[10],[20],[21]。 我们采用非线性三维各向异性扩散滤波器(non-linear three-dimensional anisotropic diffusion filter)来增强信噪比[22]。 图1(a)和(c)显示了使用各向异性扩散滤波器进行去噪之前和之后的典型B扫描。
在这里插入图片描述
图2。
直方图检查。 直方图的下部主要由噪声组成,而视网膜层信息位于直方图的上部内部。 调整了B扫描的灰度,以实现更好的可视化。 (a)和(b):从原始OCT体积和原始OCT体积的直方图进行一次B扫描。 (c)原始OCT总量的直方图,其中直方图的下部用箭头指示。 (d)与(b)中相同的B扫描,其中仅显示落在直方图下部的像素。 (e)OCT总原始体积的直方图,其中直方图的较高部分用箭头指示。 (f)与(b)中相同的B扫描,其中仅显示落在直方图较高部分的像素。
图1(c)示出了在各向异性扩散滤波器之后的噪声被抑制。但是,该层以及流体填充区域(黄色圆圈)也会模糊。这给以后的检测和分割带来了困难。图1(d)示出了图1(c)的对应直方图。请注意,未显示强度0处的最高峰值,该峰值可能高达2200万,因此可以更好地显示其余直方图。直方图显示了双峰双峰分布。一个集中在0.04的强度附近并显示陡峭的形状,而另一个集中在0.3的强度附近并显示平坦的形状。当强度大于0.91时,直方图下降到接近0。进一步检查表明,左侧分布中的大多数像素是噪声像素(图2)。在该区域发现的结构信息很少。因此,非线性亮度曲线变换被应用以进一步抑制图像噪声。图1(d)中的红线是转换曲线,图1(e)显示了亮度曲线转换后再加上另一个各向异性扩散滤镜的图像。图1(f)是相应的图像直方图。该直方图再次显示了双峰分布。因此,应用了另一个亮度曲线变换,随后是各向异性扩散滤波器。最终的图像和直方图在图1(g)和(h)中给出。在最终的直方图中,双峰分布开始合并,并且大多数噪声像素已被移除。
经过一系列的亮度曲线变换和各向异性扩散滤波器处理后,大部分灰度值较低的图像噪声得到了抑制,同时保留了结构信息。 最重要的是,如图1(h)所示,所需的充满液体的区域与视网膜层有进一步的区别。 使用了Perona-Malik各向异性扩散滤器(Perona-Malik anisotropic diffusion filter),其迭代为15,时间步长为0.06。

A 层分割
我们的小组先前已经报告了一种基于图方法的同时11层分割算法[24],[25]。 首先在下采样的低分辨率图像体积中检测出具有更明显特征的视网膜表面。 在第一阶段中检测到的表面所约束的情况下,将其他表面精炼成完整比例的子体积。 换句话说,从最容易检测到的表面到最细微的界面结束,对11个表面进行分层检测。 一旦检测到所有表面,将应用薄板样条使表面光滑(图3)。
与流体有关的异常也表现出某些与层有关的性质(图4)。 例如,视网膜内液通常出现在外部丛状层(OPL,L6)上方,该区域显示出大的卵形低反射率区域,并被代表视网膜内囊样腔的高反射间隔隔开[26]。 视网膜下液是在外段层(OS,L7)下的深色液体积聚。 RPE产生的高反射带将RPE液(下)与视网膜下液(上)区分开。 因此,这些层具有与流体相关的异常的可能性更高。 另一方面,尽管外核层(ONL)不太可能成为液体区域,但由于其视网膜内反射率降低,它表现出与液体相关异常相似的质感,从而导致假阳性。 这也被视为依赖于图层的属性。

B.分层抽样的体素分类
基于先前的观察,我们提出了一种基于分层采样技术的监督体素分类方法。 分层样本是通过根据区域的某些既定特征对子区域(或地层)中的整个样本区域进行分类而构建的[27]。 层次应互斥且穷举,这意味着样本区域中的每个样本点都必须分配给一个层次,并且只能分配给一个层次。 因此,通过在每个层次内不同地控制采样率,我们希望同时增加可能具有SEAD的区域的敏感性,并增加易于出现假阳性的区域的特异性。
1)训练阶段:在训练阶段,针对每个采样点,计算出一组特征,包括纹理,结构和位置信息(表I中列出)[11]。 表II中给出了采样策略。 NFL和RPE之间的整个样本区域分为三个层次:NFL-OPL,ONL-OSL和VM-RPE。 对ONL-OSL区域进行了欠采样处理,以可靠地分割SEAD的困难,而又不增加该特定区域中的假阳性,而对NFL-OPL和VM-RPE进行相对采样以提高对SEAD的敏感性。 为此,首先,按照每个层的近似平均总体积,将总计40 000个负样本点分配给这三个层。 然后,根据经验将总计2 000个阳性样本点分配给每个层次,以对NFL-OPL和VM-RPE进行过度采样,而对ONL-OSL进行欠采样。 在每个层中,应用简单的随机抽样。
2)测试阶段:在测试阶段,为视网膜层内部的每个体素提取相同的特征集。 根据近邻分类器[28]在比较性初步实验中对早期实验[11]中执行的一小幅独立图像集的性能选择,从而选择了该分类器[28]。 对于每个测试体素,将k个最近邻居的平均标签指定为该体素为SEAD的最终概率,并为每个体素分配0到1之间的概率,该概率在输出图像中重新缩放为[0,255]。 使用了“一人一事”的评估策略。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值