算法
文章平均质量分 57
StarLish0715
以后,没有结果的事,就不开始了。
展开
-
vs2022+opencv4.6+qt6.2.4环境搭建
1.vs2022安装,务必安装windows SDK。匹配的版本是MSVC2019。建议不要有下划线路径。2.opencv适配。原创 2022-11-10 15:57:52 · 1276 阅读 · 0 评论 -
ImageNet和COCO数据集分类
ImageNet Large Scale Visual Recognition Competition (ILSVRC)-ImageNet数据集标签名称中英文对照https://blog.csdn.net/Jwenxue/article/details/107285822COCO数据集的总计80个类https://www.it610.com/article/1279238350879866880.htm 0转载 2021-08-21 13:09:20 · 2382 阅读 · 0 评论 -
ImageNet图像数据集介绍
https://blog.csdn.net/fengbingchun/article/details/88606621 ImageNet图像数据集始于2009年,当时李飞飞教授等在CVPR2009上发表了一篇名为《ImageNet: A Large-Scale Hierarchical Image Database》的论文,之后就是基于ImageNet数据集的7届ImageNet挑战赛(2010年开始),2017年转载 2021-08-21 13:00:54 · 2807 阅读 · 0 评论 -
交通标志数据集-整理
中国交通标志检测数据集(CCTSDB)【新增测试数据】https://blog.csdn.net/dong_ma/article/details/84339007GTSDB:德国交通标志检测基准和GTSRB:德国交通标志识别基准(波鸿鲁尔大学)https://benchmark.ini.rub.de/?section=gtsrb&subsection=newsLISA交通标志数据集-在6610帧(Mogelmose,Trivedi和Moeslund)上的47种美国标志类型的视频,带有7855原创 2021-08-21 11:25:44 · 6239 阅读 · 3 评论 -
深度学习中常见的打标签工具和数据集集合
https://blog.csdn.net/xiaomu_347/article/details/83744828 集大家之所长汇集于此,希望对有需要的你能有所帮助。 一、打标签工具 (1)labelimg/labelme 这两款工具简便易行,前者主要用于对目标进行大致的标定,用于常见的框选标定,后者主要用于较为细致的轮廓标定,多用于mask rcnn等。安装也是很方便的,直接在终端下用pip install label转载 2021-08-21 10:13:30 · 9254 阅读 · 0 评论 -
深度学习中如何实现数据增强,扩大数据集
https://jingyan.baidu.com/article/4b52d702e6a167fc5c774bbb.html深度学习算法需要大量的训练数据,而有时我们收集不到太多的数据源,那么为了扩大数据集,可以采用数据增强手段来增加样本。下面介绍几种数据增强手段。工具/原料图像处理工具数据源图片方法/步骤1第一种方法是采用随机裁剪,裁剪原图像中的一部分,比如裁剪四角、中心或者上下部分等等,但是裁剪的尺寸不宜过小,如下图所示;2第二种方法是翻转或者镜像,可以水平翻转,也可以垂直翻转,如图中所示;3第三种转载 2021-08-21 09:53:18 · 3710 阅读 · 0 评论 -
安装pytorch步骤
https://blog.csdn.net/qq_37388085/article/details/102731887 1. Anaconda安装 安装步骤: 官网下载anaconda安装包https://www.anaconda.com/distribution/#downlo转载 2021-08-16 10:19:15 · 382 阅读 · 0 评论 -
面向新手的CNN入门指南(一)
https://zhuanlan.zhihu.com/p/37146355作者:Adit Deshpande编译:Bot编者按:最近小编在搜集CNN卷积计算方面的资料,希望能出一份清晰明了的图文列表,但即便是在CNN介绍已经泛滥的今天,一篇好的、简单易懂的博客文章都是那么稀缺。今天,小编就先编译加州大学洛杉矶分校学生Adit Deshpande的几篇入门文章,希望能给新手读者带来帮助。简介单从字面上看,卷积神经网络这个词听起来就像是生物学和数学的诡异组合,里面可能还掺了一点计算机科学的意味,但这种神经网络转载 2021-08-13 16:46:29 · 940 阅读 · 0 评论 -
Transformer在CV领域有可能替代CNN吗?
https://www.sohu.com/a/443439940_473283 原标题:Transformer在CV领域有可能替代CNN吗? 新智元推荐 来源:极市平台&知乎 编辑:SF 【新智元导读】Transformer有可能替换CNN吗?本文总结了来自于知乎问题:“如何看待Transformer在CV上的应用前景,未来有可能替代CNN吗?”下的3个精华回答,对Transformer在CV领域的未来发展提出了有价值的观点。 目转载 2021-08-11 16:51:03 · 273 阅读 · 0 评论 -
【深度学习】网络架构设计:CNN based和Transformer based
https://zhuanlan.zhihu.com/p/348503098 从DETR到ViT等工作都验证了Transformer在计算机视觉领域的潜力,那么很自然的就需要考虑一个新的问题,图像的特征提取,究竟是CNN好还是Transformer好? 其中CNN的优势在于参数共享,关注local信息的聚合,而Transformer的优势在于全局感受野,关注global信息的聚合。直觉上来转载 2021-08-11 16:50:07 · 316 阅读 · 0 评论 -
TensorFlow教程:TensorFlow快速入门教程(非常详细)
http://c.biancheng.net/tensorflow/ 首页 > TensorFlow阅读:387,417TensorFlow教程:TensorFlow快速入门教程(非常详细)< 上一页TensorFlow教程TensorFlow是什么下一页 >Python一对一答疑,帮助有志青年!使用QQ在线辅导,哪里不懂问哪里,整个过程都是一对一,学习更有针对性。和作者直接交流,不但提升技能,还提升 Level;当你决定加入我们,你已然超越了 90% 的程序员。猛转载 2021-06-17 16:17:36 · 3449 阅读 · 4 评论 -
tensorflow入门教程(五十一)tensorflow转ONNX使用教程(Python)
tensorflow入门教程https://blog.csdn.net/rookie_wei/category_7629810.html # #作者:韦访 #博客:https://blog.csdn.net/rookie_wei #微信:1007895847 #添加微信的备注一下是CSDN的 #欢迎大家一起学习 # ---- 韦访20190813 1、概述 关于ONNX的介绍,请自行百度。现在很多深度学习框架都支持了ONNX,方便了模型的部署和在各个框架之间转载 2021-06-17 11:55:18 · 3091 阅读 · 0 评论 -
C++部署pytorch模型
https://zhuanlan.zhihu.com/p/191569603[toc]C++部署pytorch模型前言项目需要将pytorch训练好的网络用c++调用,在正式开始项目之前,在网上查了各种资料,共有三种实现方法: 直接将网络从最基础的CNN模块用C++实现; 将网咯模型和参数保存,然后使用opencv的DNN模块加载,这个方法tensorflow、torch等其他网络架构也能用,具体包含哪些下文会给出; * 使用pytorch官网提供的c++接口:LibTorch。其原理也是保存网络模型转载 2021-06-16 10:53:41 · 2161 阅读 · 0 评论 -
程序员开发工具大全(转换和工具)
https://tool.ip138.com/ <tr class="bg"> <td colspan="3">转换工具</td> </tr> <tr title="UNIX时间戳转换"> <td>1</td> <td><a href="/timestamp/" target="_blank">UNI转载 2021-05-25 09:41:17 · 445 阅读 · 0 评论 -
GPS坐标转换ddmm.mmmm(度分)-> dd.dddd(度)
#include <stdio.h>#include <string.h>#include <stdlib.h> int ddmm2dd(const char *ddmm, char *dd){ if (NULL == ddmm || NULL == dd) { return -1; } int lenSrc = strlen(ddmm)+1; int len...转载 2021-04-30 14:12:30 · 1197 阅读 · 0 评论 -
MD5算法的C++实现
https://www.cnblogs.com/flying_bat/archive/2007/09/25/905133.html1. IntroductionMD5算法是一种消息摘要算法(Message Digest Algorithm),此算法以任意长度的信息(message)作为输入进行计算,产生一个128-bit(16-byte)的指纹或报文摘要(fingerprint or message digest)。两个不同的message产生相同message digest的几率相当小,从一个给定的me转载 2020-10-26 17:13:36 · 1248 阅读 · 0 评论 -
常见加密算法简析
1、对称加密算法(AES、DES、3DES)对称加密算法是指加密和解密采用相同的密钥,是可逆的(即可解密)。AES加密算法是密码学中的高级加密标准,采用的是对称分组密码体制,密钥长度的最少支持为128。AES加密算法是美国联邦政府采用的区块加密标准,这个标准用来替代原先的DES,已经被多方分析且广为全世界使用。AES数学原理详解:https://www.cnblogs.com/block2016/p/5596676.html优点:加密速度快缺点:密钥的传递和保存是一个问题,参与加密和解密...转载 2020-10-26 16:56:14 · 666 阅读 · 2 评论 -
基于OpenCV和YOLOv3深度学习的目标检测
https://blog.csdn.net/qq_27158179/article/details/81915740 本文翻译自Deep Learning based Object Detection using YOLOv3 with OpenCV ( Python / C++ )基于OpenCV和YOLOv3深度学习的目标检测&转载 2020-08-18 11:12:57 · 765 阅读 · 0 评论 -
【opencv】基于opencv2的人脸识别系统
OpenCV人脸识别完整版(链接)https://www.jianshu.com/p/232b12db4ea6基于OepnCV的完整版的人脸识别,描述了人脸识别的全部流程,从数据收集和处理一直到最终训练出可以识别出自己的脸的模型。每一步都有代码讲解。讲解部分是原来的内容,基于opencv2。最终的放出代码是基于当下最新的OpenCV3.2。差别不大,细微的差别已经在源码放送那篇文章中写出。希望对于正在学习人脸识别的人有所帮助。OpenCV人脸识别之一:数据收集和预处理OpenCV人脸识别之二:模型转载 2020-08-17 22:45:02 · 1139 阅读 · 0 评论