LCP 19. 秋叶收藏集(动态规划典型问题)

  • 题目描述:

  • 解题过程

这是一个动态规划问题,

目标顺序是:红黄红

状态标记列J=012表示红黄红三个状态

 i=元素列

归纳递归式为:

f[i][0]=f[i−1][0]+isYellow(i)//最初的红色状态前不能为黄色

f[i][1]=min{f[i−1][0],f[i−1][1]}+isRed(i)//中间的红色状态前可以为黄色或红色

f[i][2]=min{f[i−1][1],f[i−1][2]}+isYellow(i)//最后的红色状态前为黄色或红色但是不是0状态

初始化状态为:f[0][0] = 0; f[0][1] = f[0][2] = f[1][2] = INT_MAX;

最终返回f[n - 1][2]

class Solution {
    public int minimumOperations(String leaves) {
        int n = leaves.length();
        int[][] f = new int[n][3];
        f[0][0] = leaves.charAt(0) == 'y' ? 1 : 0;
        f[0][1] = f[0][2] = f[1][2] = Integer.MAX_VALUE;
        for (int i = 1; i < n; ++i) {
            int isRed = leaves.charAt(i) == 'r' ? 1 : 0;
            int isYellow = leaves.charAt(i) == 'y' ? 1 : 0;
            f[i][0] = f[i - 1][0] + isYellow;
            f[i][1] = Math.min(f[i - 1][0], f[i - 1][1]) + isRed;
            if (i >= 2) {
                f[i][2] = Math.min(f[i - 1][1], f[i - 1][2]) + isYellow;
            }
        }
        return f[n - 1][2];
    }
}

 

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页