给你一个二维整数数组envelopes,其中envelopes[i] = [wi,hi],表示第i个信封的宽度和高度
当另外一个信封的宽恕和高度都比这个信封大的时候,这个信封就可以放进另一个信封里,如同俄罗斯套娃一样。
请计算 最多能有多少个 信封能组成一组"俄罗斯套娃"信封(即可以把一个信封放到另一个信封里面)。
注意:不允许旋转信封。
示例 1:
输入:envelopes = [[5,4],[6,4],[6,7],[2,3]]
输出:3
解释:最多信封的个数为 3, 组合为: [2,3] => [5,4] => [6,7]。
示例 2:
输入:envelopes = [[1,1],[1,1],[1,1]]
输出:1
这题如果直接按照以往动态规划的经验撸代码如下
public int maxEnvelopes(int[][] envelopes) {
int len = envelopes.length;
Arrays.sort(envelopes,(a,b)->a[0]-b[0]);
int[] dp = new int[len];
Arrays.fill(dp,1);
int ans = 1;
for(int i = 1;i<len;i++){
for(int j = 0;j<i;j++){
if((envelopes[i][1] > envelopes[j][1] && envelopes[i][0] > envelopes[j][0])
||Math.max(envelopes[j][0],envelopes[j][1])<Math.min(envelopes[i][0],envelopes[i][1])){
dp[i] = Math.max(dp[i],dp[j]+1);
if(ans<dp[i])
{
ans = dp[i];
break;
}
}
}
}
return ans;
}
但是这对于大量输入数据应用会超时,官方题解主要思路则是引入了二分查找,在遍历输入数组nums中,得到最长套娃,并且修改了初始数组排序规则。
public int maxEnvelopes(int[][] envelopes) {
if (envelopes.length == 0) {
return 0;
}
int n = envelopes.length;
Arrays.sort(envelopes, new Comparator<int[]>() {
public int compare(int[] e1, int[] e2) {
if (e1[0] != e2[0]) {
return e1[0] - e2[0];
} else {
return e2[1] - e1[1];
}
}
});
List<Integer> dp = new ArrayList<Integer>();
dp.add(envelopes[0][1]);
for (int i = 1; i < n; ++i) {
int num = envelopes[i][1];
if (num > dp.get(dp.size() - 1)) {
dp.add(num);
} else {
int index = binarySearch(dp, num);
dp.set(index, num);
}
}
return dp.size();
}
public int binarySearch(List<Integer> f, int target) {
int low = 0, high = f.size() - 1;
while (low < high) {
int mid = (high - low) / 2 + low;
if (f.get(mid) < target) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}