
手把手教你在Android系统上部署深度学习模型
文章平均质量分 89
保姆级教程,手把手教学,从环境配置、到制作自己的数据集、再到训练模型,最终如何将训练好的模型部署到Android,实现一个移动端的人工智能应用;流程精简,细节详细,避免趟坑。
机器人涮火锅
一名计算机视觉开发工程师,主要研究领域包括图像分类、目标检测、人脸识别、双目测距和3D点云等,做过移动端的深度学习模型的部署解决方案。
展开
-
pp-picodet从环境配置到部署全流程(10)—— 供其它项目调用
虽然在部署时就是调用Lite的API来进行模型推理,但在模型推理后一般还需要后处理等操作(如:nms,画出Bbox等),如果项目中只想使用简单且无需进一步处理的检测结果,或不想自己创建接口文件等,那么这里想到的一个方式就是打包成so库和jar包,以供其它项目直接调用。.........原创 2022-07-28 10:28:48 · 733 阅读 · 0 评论 -
pp-picodet从环境配置到部署全流程(9)——Demo代码讲解
本篇文章主要讲解部署Demo的代码,重要部分在代码中注释了。原创 2022-07-27 21:14:10 · 724 阅读 · 0 评论 -
pp-picodet从环境配置到部署全流程(8)——如何运行Demo
本片文章首先从整体介绍Picodet_Detection_Demo 的代码结构,然后再从 Java 和 C++ 两部分简要的介绍 Demo 每部分功能。原创 2022-07-27 21:11:00 · 595 阅读 · 0 评论 -
pp-picodet从环境配置到部署全流程(7)——部署环境配置
本片文章主要介绍pp-picodet部署到Android系统需要准备的环境。原创 2022-07-27 21:06:51 · 1364 阅读 · 0 评论 -
pp-picodet从环境配置到部署全流程(6)——PaddleLite第三方模型部署
X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学习框架用户快速迁移至飞桨框架。目前支持推理模型的框架转换与PyTorch训练代码迁移,还提供了详细的不同框架间API对比文档,降低开发者上手飞桨核心的学习成本。目前已经支持Caffe/TensorFlow/ONNX/PyTorch的模型一键转为飞桨的预测模型,并使用PaddleInference/PaddleLite进行CPU/GPU/Arm等设备的部署;此外还支持PyTorch项目Python代码(包括训练、预测.........原创 2022-07-27 21:00:46 · 770 阅读 · 0 评论 -
pp-picodet从环境配置到部署全流程(5)——PaddleLite端侧部署
PaddleDetection提供了Paddle Inference、Paddle Serving、Paddle-Lite多种部署形式,支持服务端、移动端、嵌入式等多种平台,提供了完善的Python和C++部署方案。Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。本篇文章就是主要介绍paddlelite的使用。.........原创 2022-07-27 16:30:26 · 727 阅读 · 0 评论 -
pp-picodet从环境配置到部署全流程(4)——训练评估测试
本篇文章主要介绍如何用自己的数据集训练模型,然后评估和测试。原创 2022-07-27 16:21:41 · 977 阅读 · 0 评论 -
pp-picodet从环境配置到部署全流程(3)—— 数据准备
paddledetection训练模型主要可使用VOC格式和COCO格式的数据,本篇文章将重点介绍怎么按格式准备自己的数据集,以及如何将其他格式的数据集转成COCO格式。原创 2022-07-27 16:17:03 · 784 阅读 · 0 评论 -
pp-picodet从环境配置到部署全流程(1)——pp-picodet的优势所在
本篇文章要介绍的是百度飞桨的轻量级目标检测PP-Picodet,PP-Picodet针对模型的速度、精度、体积和部署都作出了优化,并且确定显著的成果。原创 2022-07-27 16:08:58 · 1008 阅读 · 0 评论 -
pp-picodet从环境配置到部署全流程(2)—— 环境配置
pp-picodet是基于百度飞桨paddlepaddle框架进行开发的,所以首先需要安装paddlepaddle框架,然后安装paddledetection项目,接着还需要安装IDE作为开发工具原创 2022-07-27 15:57:59 · 721 阅读 · 0 评论 -
Android Studio安装,看这一篇就够啦!!!
适合无基础,纯小白,手把手教你安装Android Studio原创 2022-07-27 15:33:44 · 1466 阅读 · 0 评论 -
YOLOX从训练到NCNN部署全流程(9)——使用so库和jar包
已经打包好了so和jar,接下来就试一下能否正常使用原创 2022-07-13 14:28:40 · 387 阅读 · 0 评论 -
YOLOX从训练到NCNN部署全流程(8)——生成so库与jar包
生成so库和jar包就能方便的调用了原创 2022-07-13 14:26:39 · 616 阅读 · 0 评论 -
YOLOX从训练到NCNN部署全流程(7)——模型部署测试
把库的module作为app module的项目依赖,测试之前创建的库是否正常原创 2022-07-13 14:25:31 · 583 阅读 · 0 评论 -
YOLOX从训练到NCNN部署全流程(6)——模型部署
这个部分的目的就是新建一个库,专门用来调用深度学习模型,然后将库打包起来供别人从java层调用这个库。因为jni中的函数名是有特殊要求的,它会指定jni的java接口的路径,如果不提供jar包,那么使用者就要按照我们在jni头文件中声明的函数名来建立java文件,这是几乎不可能的事情。..................原创 2022-07-13 14:23:29 · 785 阅读 · 0 评论 -
YOLOX从训练到NCNN部署全流程(5)——创建demo工程
新建Android工程用于部署yolox模型原创 2022-07-13 14:21:14 · 1002 阅读 · 0 评论 -
YOLOX从训练到NCNN部署全流程(4)——模型修改
YOLOX部署到NCNN,在模型由onnx 转param后,需要对模型结构做一点修改原创 2022-07-13 14:20:12 · 469 阅读 · 0 评论 -
YOLOX从训练到NCNN部署全流程(3)——模型转化与量化
NCNN是腾讯公司开源的一个专为手机端极致优化的高性能神经网络前向计算框架。NCNN从设计之初,就深刻考虑手机端的部署和使用,无需第三方依赖,跨平台,手机端CPU的速度快于目前所有已知的开源框架。基于NCNN,开发者能够将深度学习算法轻松移植到手机端高效执行,开发出人工智能APP将AI带到你的指尖。..................原创 2022-07-13 14:08:25 · 1107 阅读 · 0 评论 -
YOLOX从训练到NCNN部署全流程(2)——代码训练
YOLOX模型训练原创 2022-07-13 14:05:02 · 554 阅读 · 0 评论 -
YOLOX从训练到NCNN部署全流程(1)——环境配置
本文主要介绍基于pytorch深度学习框架训练yolox时的环境配置原创 2022-07-13 14:03:47 · 869 阅读 · 0 评论