
人工智能
文章平均质量分 85
机器人涮火锅
一名计算机视觉开发工程师,主要研究领域包括图像分类、目标检测、人脸识别、双目测距和3D点云等,做过移动端的深度学习模型的部署解决方案。
展开
-
Windows10下多版本CUDA的安装与切换
该文章主要介绍了在Windows系统中安装多版本CUDA的步骤以及如何切换CUDA版本,具体包括确定硬件支持的CUDA版本、下载并安装CUDA、安装与之匹配的cudnn、通过修改环境变量来切换CUDA版本等内容,以满足深度学习中对不同CUDA版本的需求。原创 2024-08-07 22:27:09 · 1475 阅读 · 0 评论 -
Llama的前世今生
本文详细梳理了Meta发布的Llama系列模型的演进历程,包括Llama1、Llama2、Llama3及Llama3.1。Llama1于2023年2月发布,有多个参数量版本,在大多基准测试中超越GPT - 3,但不可免费商用;Llama2于2023年7月发布,参数量版本有所增加,预训练语料扩充,引入新技术,并发布了面向对话应用的微调系列模型Llama2 - Chat和专注于代码生成的Code - Llama;Llama3于2024年4月发布,支持8K长文本,采用新的tokenizer,预训练数据使用了大量语原创 2024-07-30 17:17:13 · 708 阅读 · 0 评论 -
RKNN模型部署(3)—— 模型转换与测试
将pth模型转换成rknn模型,然后调用rknn模型进行测试原创 2023-01-13 11:39:57 · 20995 阅读 · 11 评论 -
RKNN模型部署(4)—— 模型部署
RKNN SDK为带有RKNPU的芯片平台提供C语言编程接口,用于用户部署RKNN模型。原创 2023-01-12 09:50:58 · 2364 阅读 · 1 评论 -
RKNN模型部署(2)——环境配置
RKNN支持许多框架训练的模型,但由于本人目前主要使用pytorch框架来训练模型,因此该部署教程是以Pytorch模型部署过程为例进行说明,后面再继续补充ONNX模型部署过程。原创 2023-01-11 17:34:18 · 5481 阅读 · 8 评论 -
RKNN模型部署(1)—— 相关介绍
Rockchip板载AI芯片,内置高能效NPU,拥有强劲算力,支持多种AI框架和AI应用开发SDK,易于开发,拥有面向AI应用的丰富接口,便于扩展,适用于语音唤醒、语音识别、人脸识别等功能应用场景。原创 2023-01-11 17:33:26 · 3937 阅读 · 0 评论 -
8、双目测距及3D重建python
双目相机实现双目测距主要分为4个步骤:相机标定、双目校正、双目匹配、计算深度信息。双目相机实现三维重建主要分为2个步骤:构建点云、显示点云。原创 2023-01-11 16:29:11 · 3347 阅读 · 1 评论 -
7、代价聚合Python
代价聚合的根本目的是让代价值能够准确的反映像素之间的相关性。匹配代价的计算往往只会考虑局部信息,通过两个像素邻域内一定大小的窗口内的像素信息来计算代价值,这很容易受到影像噪声、弱纹理或重复纹理的影响。而代价聚合则是建立邻接像素之间的联系,以一定的准则,来对代价矩阵进行优化。每个像素在某个视差下的新代价值都会根据其相邻像素在同一视差值或者附近视差值下的代价值来重新计算。原创 2023-01-11 16:26:18 · 1226 阅读 · 2 评论 -
6、经典匹配代价计算方法python
基于python实现的AD、SAD、Census、CensusAD等算法原创 2023-01-11 16:18:28 · 810 阅读 · 3 评论 -
5、立体匹配与视差图计算
立体匹配的目的是为左图中的每一个像素点在右图中找到其对应点,这样就可以计算出视差。大部分立体匹配算法的计算过程可以分成以下几个阶段:匹配代价计算、代价聚合、视差计算、视差优化。原创 2023-01-11 16:12:55 · 2189 阅读 · 0 评论 -
4、OpenCV-Python双目标定流程
双目视觉标定就是通过求解实际三维空间中坐标点和摄像机二维图像坐标点的对应关系,在该篇文章中,利用opencv-python检测棋盘格角点获取到用于计算二维图像坐标和三维空间的物理坐标求解出变换矩阵。原创 2023-01-11 16:09:32 · 6451 阅读 · 9 评论 -
3、Matlab双目标定流程
Matlab有相机标定的工具箱,若相机不经常需要标定,Matlab的标定工具箱是个不错的选择。原创 2023-01-11 16:04:48 · 2078 阅读 · 1 评论 -
2、双目标定图像采集
基于python实现的双目摄像头采集棋盘格图片代码,以用于双目摄像头的标定。原创 2023-01-11 16:01:10 · 1078 阅读 · 0 评论 -
1、相机标定原理
相机标定可以说是计算机视觉/机器视觉的基础,也是面试过程中经常出现的问题。相机标定涉及的知识面很广,成像几何、镜头畸变、单应矩阵、非线性优化等。在双目测距系统中,相机标定能消除畸变,进行立体校正,从而提高视差计算的准确性,这样才能得到精确的深度图。原创 2023-01-11 15:57:54 · 3609 阅读 · 0 评论 -
PaddleLited的工作流程
Paddle-Lite 框架作为 PaddleMobile 新一代架构,重点支持移动端推理预测,特点高性能、多硬件、轻量级。原创 2022-08-11 11:22:18 · 754 阅读 · 0 评论 -
pp-picodet从环境配置到部署全流程(1)——pp-picodet的优势所在
本篇文章要介绍的是百度飞桨的轻量级目标检测PP-Picodet,PP-Picodet针对模型的速度、精度、体积和部署都作出了优化,并且确定显著的成果。原创 2022-07-27 16:08:58 · 1008 阅读 · 0 评论 -
Android Studio安装,看这一篇就够啦!!!
适合无基础,纯小白,手把手教你安装Android Studio原创 2022-07-27 15:33:44 · 1466 阅读 · 0 评论