【数据结构-栈】卡特兰数

本文深入探讨了卡特兰数在计算二叉树形态数和出栈序列数中的应用。通过实例解析,展示了如何利用卡特兰数公式f(n)=C(2n,n)/(n+1)来求解不同元素的进栈出栈序列问题,同时阐述了这种序列与二叉树先序序列的关联,揭示了它们在确定二叉树结构上的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卡特兰数公式

  • f(n) = C(2n,n) / (n+1)
  • 计算用途:二叉树形态数,出栈序列数

出栈序列数

【例 1】3 个不同元素依次进栈,能得到多少种不同的出栈序列?

【解】f(3) = C(6,3) / (3+1) = 20 / 4 = 5

【例 2】5 个不同元素依次进栈,能得到多少种不同的出栈序列?

【解】f(5) = C(10,5) / (5+1) = (6 * 7 * 6) / 6 = 42

二叉树形态数

【例】先序序列(前序序列)为 a, b, c, d 的不同二叉树的个数是?

【解】前序序列为入栈次序,中序序列为出栈序列,因为前序序列和中序序列可以唯一确定一棵二叉树,所以相当于“以序列 a, b, c, d
为入栈次序,则出栈序列的个数是?”

f(4) = C(8,4) / (4+1) = 70 / 5 = 14

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值