这次来实现三对角线方程组的追赶法,追赶法的本质还是高斯消元法,而且是没选主元的高斯消元法,只是因为Ax=b中系数矩阵A非常特殊,所以就可以采用相对特殊的方法来解方程组。同样,按照常规的步骤,先分析什么是追赶法,再给出追赶法的数学步骤,最后用C++实现这种算法。
(一)追赶法的功能和步骤
明确好目的,正所谓磨刀不误砍柴工,做一件事情事先规划好,那重要性真的是不言而喻。在一些实际问题中,对角占优的三对角线方程组很常见,如热传导方程,形式如下图1:
应用追赶法能解这种三对角线方程组还有很严苛的条件,那就是对角占优,主对角线元素的绝对值要最大,大到什么程度呢?大到绝对值比旁边两条次对角线的值的绝对值之和还要大,这样才能用追赶法来接三对角线方程组,苛刻的条件如下图2:
所以,追赶法就是用来解这类线性方程组的。
追赶法的步骤:追赶法的本质就是没有选主元的高斯消元法,当然系数矩阵***A***都这么特殊了,再用原始的高斯消元法就实在是浪费空间和时间了,特殊的特性就应该用起来,就像做数学证明题时一样,要把事物本身的性质尽可能都用上。实现追赶法最有趣的不是数学方法,而是编程实现,因为之前的系数矩阵***A***是低阶的稠密矩阵,所以编程采用的数据结构就是二维的矩阵,或者说是二重指针,但是实现追赶法,没必要用到二重指针,只要一维数组就够用了,因为就三对角线上有元素,所以一维数组的大小是**n+2(n-1)***,即**3n-1***就够了,然后最重要的就是将系数矩阵***A**的(i,j)***元素同一维数组***B[]***的位置***k***的元素相对应,将这层关系理清楚了
数值分析(二):C++实现三对角线方程组的追赶法
最新推荐文章于 2024-09-02 15:49:36 发布