
机器学习
文章平均质量分 72
像影子追着光梦游_
我很好奇
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2-分类问题 SVM 核函数
目录一,核函数的引入二,核函数的定义三,核函数介绍:四,核函数总结:世界上本来没有两个完全一样的物体,对于所有的两个物体,我们可以通过增加维度来让他们最终有所区别,比如说两本书,从(颜色,内容)两个维度来说,可能是一样的,我们可以加上作者这个维度,实在不行我们还可以加入页码,可以加入拥有者,可以加入购买地点,可以加入笔记内容等等。当维度增加到无限维的时候,一定可以让任意的两个物体可分了.一般对于低维线性不可分的数据,在映射到高位以后,就变成了线性可分的,为此通过核函数将低维的数据映射到高维,再次利用SVM进原创 2022-12-05 04:36:13 · 684 阅读 · 0 评论 -
2-分类问题-如何计算AUC 在没有ROC 的情况下
如何计算AUC 在没有ROC 的情况下原创 2022-12-05 04:28:13 · 259 阅读 · 0 评论 -
(2-分类问题)Accuracy,Precision,Sensitivity,Specificity
我们把数据真实情况分为 True 和 False,用T 和 F 表示,而通过我们的预测得出的正向预测结果为Positive,负向结果为Native。Accuracy指整体无论正负预测都包含的准确率。Precision指正向预测正向预测正向预测的准确率。Sensitivity指在所有真实结果为正的数据中,我们预测出来正值的比例。Specificity指在所有真实结果为负的数据中,我们预测出来负值得比例。 参考文献:precision,recall,sensitivity, specificity ,mA原创 2022-12-04 23:58:11 · 808 阅读 · 0 评论 -
常见的损失函数
1. 损失函数、代价函数与目标函数 损失函数(Loss Function):是定义在单个样本上的,是指一个样本的误差。 代价函数(Cost Function):是定义在整个训练集上的,是所有样本误差的平均,也就是所有损失函数值的平均。 目标函数(Object Function):是指最终需要优化的函数,一般来说是经验风险+结构风险,也就是(代价函数+正则化项)。2. 常用的损失函数(1)0-1损失函数(0-1 loss function) 𝐿(𝑦,𝑓(𝑥))={1,0,𝑦≠𝑓原创 2022-12-04 06:46:22 · 2073 阅读 · 0 评论 -
(1-线性回归问题)RBF神经网络
直接看公式,本质上就是非线性变换后的线性变化(RBF神经网络的思想是将低维空间非线性不可分问题转换成高维空间线性可分问题) 谷歌的人工智能位于全球前列,在图像识别、语音识别、无人驾驶等技术上都已经落地。而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶、智能助手、图像识别等许多层面。苹果业已开始全面拥抱机器学习,新产品进军家庭智能音箱并打造工作站级别Mac。另外,腾讯的深度学习平台Mariana已支持了微信语音识别的语音输入法、语音开放平台、长按语音消息转文本等产品,在微信图像识别中开始应用。全球前原创 2022-12-04 06:30:58 · 848 阅读 · 0 评论 -
(1-线性回归问题)线性回归(Linear regression)Lasso回归和Ridge回归的区别
回归分析是机器学习中的经典算法之一,用途广泛,在用实际数据进行分析时,可能会遇到以下两种问题在机器学习中,首先根据一批数据集来构建一个回归模型,然后在用另外一批数据来检验回归模型的效果。构建回归模型所用的数据集称之为训练数据集,而验证模型的数据集称之为测试数据集。模型来训练集上的误差称之为训练误差,或者经验误差;在测试集上的误差称之为泛化误差。过拟合指的是模型在训练集中表现良好,而测试集中表现很差,即泛化误差大于了经验误差,说明拟合过度,模型泛化能力降低,只能够适用于训练集,通用性不强 ;欠拟合指的是模型在原创 2022-12-04 06:25:44 · 776 阅读 · 0 评论