(2-分类问题)Accuracy,Precision,Sensitivity,Specificity

本文介绍了评估模型性能的几个关键指标:Accuracy、Precision、Sensitivity 和 Specificity 的定义及应用场景。通过对这些指标的理解,读者可以更好地衡量机器学习模型的预测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们把数据真实情况分为 True 和 False,用T 和 F 表示,

而通过我们的预测得出的正向预测结果为Positive,负向结果为Native。

Accuracy指整体无论正负预测都包含的准确率。

Precision指正向预测正向预测正向预测的准确率。

Sensitivity指在所有真实结果为正的数据中,我们预测出来正值的比例。

Specificity指在所有真实结果为负的数据中,我们预测出来负值得比例。


 

 参考文献:

precision,recall,sensitivity, specificity ,mAP等几种评价指标_lokvke的博客-CSDN博客_sensitivity指标

ROC曲线和AUC值 - 知乎

关于混淆矩阵、ROC、AUC的问题_浅笑古今的博客-CSDN博客_已知混淆矩阵 估计auc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值