(2-分类问题)Accuracy,Precision,Sensitivity,Specificity

本文介绍了评估模型性能的几个关键指标:Accuracy、Precision、Sensitivity 和 Specificity 的定义及应用场景。通过对这些指标的理解,读者可以更好地衡量机器学习模型的预测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们把数据真实情况分为 True 和 False,用T 和 F 表示,

而通过我们的预测得出的正向预测结果为Positive,负向结果为Native。

Accuracy指整体无论正负预测都包含的准确率。

Precision指正向预测正向预测正向预测的准确率。

Sensitivity指在所有真实结果为正的数据中,我们预测出来正值的比例。

Specificity指在所有真实结果为负的数据中,我们预测出来负值得比例。


 

 参考文献:

precision,recall,sensitivity, specificity ,mAP等几种评价指标_lokvke的博客-CSDN博客_sensitivity指标

ROC曲线和AUC值 - 知乎

关于混淆矩阵、ROC、AUC的问题_浅笑古今的博客-CSDN博客_已知混淆矩阵 估计auc

### 混淆矩阵中TN、FN、TP、FP的关系解释 混淆矩阵用于评估分类模型性能,通过比较预测结果与实际标签来衡量模型准确性。具体来说: #### 定义说明 - **TP (True Positive)**:表示将正类正确识别为正类的数量。即模型成功检测到所有真实存在的正样本数目[^1]。 - **TN (True Negative)**:指代负类被准确判断成负类的情况总数。这意味着对于那些实际上不属于目标类别的实例,算法能够正确地将其排除在外。 - **FP (False Positive)**:也称为I型错误或误报率,指的是原本属于负类却被错误地标记为了正类的数据点数。简单地说,这是不应该被认为是特定类型的对象却偏偏被认为如此的情形[^5]。 - **FN (False Negative)**:对应II型错误或是漏检概率,意味着某些确实应该归属于某类的事物却没有得到应有的认定。换句话说,这些本应是阳性案例的结果反而被判定了阴性状态。 #### 数量关系表达式 基于上述定义,在二元分类场景下,可以得出如下几个重要的数量关系公式: - 正确预测的比例可以通过 `Accuracy = (TP + TN) / (TP + TN + FP + FN)` 来计算[^4]。 - 查准率(Precision),反映了在所有预测为正的例子中有多少是真的正例,其公式为 `Precision = TP / (TP + FP)`[^3]。 - 召回率(Recall/Sensitivity/True positive rate),度量了所有真实的正例中有多少比例被找出来了,可以用 `Recall = TP / (TP + FN)` 表达。 此外,特异性(Specificity/Selectivity/True negative rate)用来描述非事件发生的条件下,测试能正确指出该条件不存在的能力,它等于 `Specificity = TN / (TN + FP)`。 最后值得注意的一点是在多分类环境中,当涉及到多个类别时,每个单独的类别都可以构建自己的二元混淆矩阵,并据此分析各类别间的相互影响以及整体表现状况[^2]。 ```python def calculate_metrics(TP, TN, FP, FN): accuracy = (TP + TN) / (TP + TN + FP + FN) precision = TP / (TP + FP) if (TP + FP) != 0 else 0 recall = TP / (TP + FN) if (TP + FN) != 0 else 0 specificity = TN / (TN + FP) if (TN + FP) != 0 else 0 return { "accuracy": round(accuracy, 4), "precision": round(precision, 4), "recall": round(recall, 4), "specificity": round(specificity, 4) } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值