一、背景与意义
1. 行人重识别
行人重识别(Person Re-Identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。
2. 背景
虽然视频监控遍及各处,但想要找到一个嫌疑犯还是要花费很多的人力物力,所以我们想要研究一种自动化算法帮助刑侦部门通过视频监控快速的抓到嫌疑人,目前行人重识别领域已经涌现出一大批的算法,但由于训练数据集的限制以及算法的局限性,还达不到实际应用的水平。
3. 意义
二、国内外研究现状
1.研究难点
-
无法使用脸部信息,只能用行人外貌特征来识别
-
图像分辨率低、 视角变化、姿态变化、光线变化、遮挡
-
不同摄像头视角、人体姿势变化较大: 同一个行人变化可能会很大(类内差异大);不同行人可能会很相似(类间差异小)
-
对于深度学习方法,现有数据集相对较小
2.传统方法
- 基于特征表示的行人再识别
提取更具有鲁棒性的鉴别特征对行人进行表示 - 基于距离度量方法的行人再识别
通过学习一个有判别力的距离度量函数,使得同一个人的图像间距离小于不同行人图像间的距离。