几种激活函数比较

几种激活函数比较

为什么用激活函数

如果不用激励函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合。
如果使用的话,激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

激活函数比较

激活函数图像

a=sigmoid(z)
优点:输出为(0,1)
缺点:z足够大或者足够小时导数趋于零,使得梯度下降太慢;函数不是以0为中心。
适用于:输出层,二分分类

a=tanh(z)
优点:数据平均值接近于0;
缺点:容易产生梯度消失。

a=ReLU(z)
f(x ) = max(0,x)
rectified linear unit 修正线性函数
优点:ReLU有效的缓解了梯度消失的问题
缺点:z小于0时,导数为0,在梯度下降过程中可能会出现神经元死亡。
适用于:常用

a=max(0.01z,z)
leaky ReLU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值