移动AI系列-实时超分的探索与实践

本文介绍了百度App联合视觉技术部团队如何通过深度学习的实时超分辨率重建技术提升移动端图片和视频显示效果。文章详细讨论了超分辨率的概念、模型设计、移动端的优化策略以及实际业务应用的效果,并分享了优化后的性能数据。

原创 zhangming 百度App技术

一、背景

随着移动设备的普及,基于移动端的内容生产和消费变得越来越容易。百度App作为内容分发平台,承载着大量来自PGC和UGC贡献的图文和视频内容。在2K手机屏幕分辨率已是主流的当下,人们对观看高清晰度的资源的诉求也变得理所当然。图片和视频的采集、传输和存储受限于各种因素,难免会有一些清晰度和分辨率相对较差的资源存在,这就势必会影响到用户的观看体验。百度App联合百度视觉技术部团队,通过基于深度学习的实时超分辨率重建技术来提升端图片和视频显示效果。

二、如何提升分辨率

通常意义所说的图像、影像的分辨率是代表物理场景在成像平面上单位面积的像素多少,是反应图像细节的分辨能力的一个指标。它可用来描述图像的清晰度,分辨率越高,可呈现细节越多,所承载的像素值越精确,在同等显示硬件下,往往可以获得更好的观赏体验,这意味着更好的图片质量,同时资源文件也会更大。

注:不同分辨率的展示效果 (图片源自Wikipedia)

超分辨率可以理解为是基于现有图片像素内容来创建更多像素的过程。

传统提升图像分辨率的方式诸如插值法等,是依据固定规则来计算增加像素的值。往往会有马赛克、锯齿和边缘模糊等各种问题。

近年来,得益于深度学习技术的不断发展,诸如卷积神经网络借鉴了人类视觉系统感知图形图像的方法,通过对图像特征的提取和学习来完成重建,可达到更好更稳定的重建效果。

三、百度App超分重建模型

超分重建模型是基于VDSR的残差学习网络框架,通过模型剪裁和使用Depthwise Separable Convolution等方法对模型计算进行提速。模型输入为已经经过算法上采样至目标分辨率的Y通道,支持可变输入。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值