【模板】平衡树——Treap和Splay

二叉搜索树($BST$):一棵带权二叉树,满足左子树的权值均小于根节点的权值,右子树的权值均大于根节点的权值。且左右子树也分别是二叉搜索树。(如下)

$BST$的作用:维护一个有序数列,支持插入$x$,删除$x$,查询排名为$x$的数,查询$x$的排名,求$x$的前驱后继等操作。

时间复杂度:$O(操作数\times 树深度)$。

也就是插入一个有序序列时复杂度稳定在$O(N^2)$……

平衡树:深度稳定在$O(log{节点数})$的$BST$。

使深度稳定的几种方法:增加一个破坏单调性的第二权值($Treap$),每插入一个数进行旋转保持平衡($Splay$),维护每个子树的$size$并使左右子树的$size$保持平衡($SBT$)等。

本文主要给出$Treap$和$Splay$的实现方法。

 


 

$Treap$:顾名思义,该数据结构是$Tree$与$Heap$的结合体。

思想:在第一关键字满足$BST$性质的同时,为每个节点随机生成一个第二关键字,并通过旋转使得第二关键字满足堆性质。

旋转:(网上讲的很清楚了w)分为左右旋两种,如图(图源网络):

例如:(图源网络,图中点内是第一关键字【满足$BST$】,点外是随机生成的第二关键字【满足堆】)

优点:常数小,实现简单。

缺点:应用范围较小,略有$0.001$%运气因素(能随机出来$10^5$个递增的数就可以去买彩票了w)

例题:bzoj3224普通平衡树

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<ctime>

using namespace std;
#define MAXN 100005
#define MAXM 500005
#define INF 0x7fffffff
#define ll long long

struct Treap{
    int l,r; //左儿子、右儿子
    int num,rnd; //该节点的第一关键字(权值)、该节点的第二关键字
    int cnt,siz; //该节点权值的出现次数、以该节点为根的子树的大小 
}tr[MAXN];
int tot,root; //当前节点数、当前根节点 

inline int read(){
    int x=0,f=1;
    char c=getchar();
    for(;!isdigit(c);c=getchar())
        if(c=='-')
            f=-1;
    for(;isdigit(c);c=getchar())
        x=x*10+c-'0';
    return x*f;
}

inline void update(int k){
    tr[k].siz=tr[k].cnt;
    tr[k].siz+=tr[tr[k].l].siz;
    tr[k].siz+=tr[tr[k].r].siz;
    return; 
}
inline void zig(int &k){ //将以k为根的子树左旋(看图) 
    int tp=tr[k].r;
    tr[k].r=tr[tp].l; //将k的右儿子置为k的右儿子的左儿子 
    tr[tp].l=k; //将k的右儿子的左儿子置为k 
    tr[tp].siz=tr[k].siz; //右儿子成为新的根,size等于k的size 
    update(k); //更新k的size 
    k=tp; //以k为根的子树变为以k的右儿子为根的子树,换根 
    return;
}
inline void zag(int &k){ //将以k为根的子树右旋(同上) 
    int tp=tr[k].l;
    tr[k].l=tr[tp].r;
    tr[tp].r=k;
    tr[tp].siz=tr[k].siz;
    update(k);
    k=tp;return;
}
inline void ins(int x,int &k){ //插入数x 
    if(k==0){ //当前节点为空则在此处新建节点 
        k=++tot;
        tr[k].cnt=tr[k].siz=1;
        tr[k].rnd=rand(); 
        tr[k].num=x;
        return;
    }
    tr[k].siz++; //插入的节点在该子树内,size+1 
    if(x==tr[k].num) tr[k].cnt++; //如果该数已经出现过则不用新建节点,将该节点的cnt+1即可 
    else if(x<tr[k].num){
        ins(x,tr[k].l); //x小于当前节点的关键字则插入当前节点的左子树 
        if(tr[tr[k].l].rnd<tr[k].rnd) zag(k); 
        //如果左儿子的第二关键字不满足小根堆性质就把左儿子转上来,容易证明此时一定满足堆性质 
    }
    else{
        ins(x,tr[k].r); //x大于当前节点的关键字则插入当前节点的右子树
        if(tr[tr[k].r].rnd<tr[k].rnd) zig(k); //同上 
    }
    return;
}

inline void del(int x,int &k){ //删除数x 
    if(k==0) return; //如果x没出现则返回 
    if(x==tr[k].num){
        if(tr[k].cnt>1) tr[k].cnt--,tr[k].siz--; 
        //如果该节点出现次数>=1则不用移除节点,出现次数-1即可 
        else if(tr[k].l*tr[k].r==0) 
            k=tr[k].l+tr[k].r;
        //如果该节点的儿子数<=1则可以直接删除,即拿它的儿子代替它 
        else if(tr[tr[k].l].rnd<tr[tr[k].r].rnd) zag(k),del(x,k);
        else zig(k),del(x,k);
        //否则将该节点旋转到可以直接删除的位置再删除 
        return;
    }
    tr[k].siz--; //删除的节点在该子树内,size-1 
    if(x<tr[k].num) del(x,tr[k].l); //x在当前节点的左子树 
    else del(x,tr[k].r); //x在当前节点的右子树 
    return;
}

inline int qrnk(int x,int k){ //查询x数的排名(相当于查询有多少个数小于x) 
    if(k==0) return 0;
    if(x==tr[k].num) return tr[tr[k].l].siz+1; 
    //找到了x,此时小于x的数的个数等于左子树的大小,排名需要+1 
    else if(x<tr[k].num) return qrnk(x,tr[k].l);
    //x在当前节点的左子树中,直接递归左子树 
    else return qrnk(x,tr[k].r)+tr[tr[k].l].siz+tr[k].cnt;
    //x在当前节点的右子树中,此时该节点及其左子树的权值均小于x,需要将这部分size加入答案 
}

inline int qnum(int x,int k){ //查询排名为x的数 
    if(k==0) return 0;
    if(tr[tr[k].l].siz<x && x<=tr[tr[k].l].siz+tr[k].cnt) return tr[k].num;
    //此时的排名正好确定在当前节点(大于等于当前节点的权值第一次出现的位置,小于等于该权值最后一次出现的位置),返回该节点的权值(第一关键字)即可 
    else if(tr[tr[k].l].siz>=x) return qnum(x,tr[k].l);
    // 排名为x的数在当前节点的左子树中,直接递归 
    else return qnum(x-(tr[tr[k].l].siz+tr[k].cnt),tr[k].r);
    //排名为x的数在当前节点的右子树中,此时该节点及其左子树不影响右子树中数的排名,需要减去这部分size 
}

inline int qpre(int x,int k){ //查询x数的前驱(最大的小于x的数) 
    if(k==0) return -INF; 
    if(x<=tr[k].num) return qpre(x,tr[k].l);
    //x在当前节点的左子树中,此时该节点不影响答案,递归左子树 
    else return max(qpre(x,tr[k].r),tr[k].num);
    //x在当前节点的右子树中,此时该节点的权值小于等于x,又因为该节点的权值大于该节点左子树中的所有权值,将答案与k取max即可 
}

inline int qnxt(int x,int k){ //查询x数的后继(最小的大于x的数),基本同上 
    if(k==0) return INF;
    if(x>=tr[k].num) return qnxt(x,tr[k].r); 
    else return min(qnxt(x,tr[k].l),tr[k].num);
}

int main(){
    srand(time(0));
    int T=read();
    while(T--){
        int op=read(),x=read();
        switch(op){
            case 1:ins(x,root);break;
            case 2:del(x,root);break;
            case 3:printf("%d\n",qrnk(x,root));break;
            case 4:printf("%d\n",qnum(x,root));break;
            case 5:printf("%d\n",qpre(x,root));break;
            case 6:printf("%d\n",qnxt(x,root));break;
        }
    }return 0;
}

 


 

$Splay$:又名旋转树,该数据结构通过巧妙的双旋&单旋($splay$)使树保持平衡。

基本思想:每次插入/查找一个节点时便将其旋转到根,在旋转过程中使树“看起来”逐渐平衡。

旋转:同上,双旋时注意若三点一线则需要转中间节点不然会失衡。(例如图中$1,2,4$节点需要先转$2$)

优点:使用范围很广,可以维护各种奇怪的区间操作。

缺点:实现复杂,常数较大,时间复杂度大概在$O(N\times log^2 N)$左右。严格证明我也不会

例题:同上。

代码:(某同学没有要求就不加注释了,需要注释可以@我w)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>

using namespace std;
#define MAXN 100005
#define MAXM 500005
#define INF 0x7fffffff
#define ll long long

struct node{
    int v,f,siz,cnt,ch[2];
}tr[MAXN];
int rt,tot;

inline int read(){
    int x=0,f=1;
    char c=getchar();
    for(;!isdigit(c);c=getchar())
        if(c=='-')
            f=-1;
    for(;isdigit(c);c=getchar())
        x=x*10+c-'0';
    return x*f;
}

inline bool getf(int k){return tr[tr[k].f].ch[1]==k;}
inline void update(int k){
    tr[k].siz=tr[k].cnt;
    tr[k].siz+=tr[tr[k].ch[0]].siz;
    tr[k].siz+=tr[tr[k].ch[1]].siz;
    return;
}
inline void clear(int k){
    tr[k].v=tr[k].f=0;
    tr[k].ch[0]=tr[k].ch[1]=0;
    tr[k].siz=tr[k].cnt=0;
    return;
}
inline void rotate(int k){
    int f1=tr[k].f,f2=tr[f1].f;bool d=getf(k);
    tr[f1].ch[d]=tr[k].ch[d^1];tr[tr[k].ch[d^1]].f=f1;
    tr[k].ch[d^1]=f1;tr[f1].f=k;tr[k].f=f2;
    if(f2) tr[f2].ch[tr[f2].ch[1]==f1]=k;
    update(f1);update(k);return;
}
inline void splay(int k){
    for(int fa;fa=tr[k].f;rotate(k))
        if(tr[fa].f)
            rotate(getf(k)==getf(fa)?fa:k);
    rt=k;return;
}
inline int qrnk(int x){
    int now=rt,ans=0;
    while(1){
        if(x==tr[now].v){
            ans+=tr[tr[now].ch[0]].siz+1;
            splay(now);return ans;
        }
        else if(x<tr[now].v) now=tr[now].ch[0];
        else ans+=tr[tr[now].ch[0]].siz+tr[now].cnt,now=tr[now].ch[1];
    }
}
inline int qnum(int x){
    int now=rt;
    while(1){
        if(tr[tr[now].ch[0]].siz<x && tr[tr[now].ch[0]].siz+tr[now].cnt>=x)
            return tr[now].v;
        else if(tr[tr[now].ch[0]].siz>=x) now=tr[now].ch[0];
        else x-=tr[tr[now].ch[0]].siz+tr[now].cnt,now=tr[now].ch[1];
    }
}
inline int qpre(){
    int now=tr[rt].ch[0];
    while(tr[now].ch[1]) now=tr[now].ch[1];
    return now;
}
inline int qnxt(){
    int now=tr[rt].ch[1];
    while(tr[now].ch[0]) now=tr[now].ch[0];
    return now;
}
inline void ins(int x){
    if(!rt){
        tr[++tot].v=x,tr[tot].f=0;
        tr[tot].ch[0]=tr[tot].ch[1]=0;
        tr[tot].siz=tr[tot].cnt=1;
        rt=tot;return;
    }
    int now=rt,fa=0;
    while(1){
        if(x==tr[now].v){
            tr[now].cnt++;
            update(now);update(fa);
            splay(now);break;
        }
        fa=now;now=tr[now].ch[x>tr[now].v];
        if(!now){
            tr[++tot].v=x,tr[tot].f=fa;
            tr[tot].ch[0]=tr[tot].ch[1]=0;
            tr[tot].siz=tr[tot].cnt=1;
            tr[fa].ch[x>tr[fa].v]=tot;
            update(fa);splay(tot);
            break;
        }
    }
    return;
}
inline void del(int x){
    qrnk(x);
    if(tr[rt].cnt>1) tr[rt].cnt--,update(rt);
    else if(!tr[rt].ch[0] && !tr[rt].ch[1]) clear(x),rt=0;
    else if(!tr[rt].ch[0]){
        int tp=rt;rt=tr[rt].ch[1];
        tr[rt].f=0;clear(tp);
    }
    else if(!tr[rt].ch[1]){
        int tp=rt;rt=tr[rt].ch[0];
        tr[rt].f=0;clear(tp);
    }
    else{
        int tp=rt;splay(qpre());
        tr[rt].ch[1]=tr[tp].ch[1];
        tr[tr[tp].ch[1]].f=rt;
        update(rt);clear(tp);
    }
    return;
}

int main(){
    int T=read();
    while(T--){
        int opt=read(),x=read();
        switch(opt){
            case 1:ins(x);break;
            case 2:del(x);break;
            case 3:printf("%d\n",qrnk(x));break;
            case 4:printf("%d\n",qnum(x));break;
            case 5:ins(x);printf("%d\n",tr[qpre()].v);del(x);break;
            case 6:ins(x);printf("%d\n",tr[qnxt()].v);del(x);break;
        }
    } 
    return 0;
}

 

转载于:https://www.cnblogs.com/YSFAC/p/10088050.html

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
红黑树和平衡二叉树都是用于保持二叉搜索树平衡的数据结构,但它们在某些方面有所不同。 优点: 1. 平衡性:红黑树和平衡二叉树都能够在插入和删除操作后自动调整树的结构,保持树的平衡,从而保证了在最坏情况下的查找效率为O(log n)。 2. 动态性:红黑树和平衡二叉树都支持高效的动态插入和删除操作,适用于频繁更新的应用场景。 3. 操作简单:相比其他平衡树结构,红黑树和平衡二叉树的操作相对简单,实现起来较为容易。 差异: 1. 结构性:红黑树是一种特殊的二叉搜索树,它在每个节点上增加了一个额外的颜色属性,并通过一些规则来保持树的平衡。而平衡二叉树是一种更广义的概念,可以有多种实现方式,如AVL树、Treap等。 2. 调整频率:红黑树的调整操作相对较少,仅在插入和删除时需要进行调整。而平衡二叉树可能需要更频繁地进行调整,因为它要保持每个节点的左右子树高度差不超过1。 3. 空间利用:红黑树需要额外的颜色属性来维持平衡,并且每个节点还需要存储其颜色信息。而平衡二叉树只需要存储节点值和指向左右子树的指针,相对而言空间利用更加紧凑。 综上所述,红黑树相对于平衡二叉树在实现和调整操作上更简单,但在空间利用上稍逊一筹。选择使用哪种结构取决于具体应用场景和需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值