关于三角恒等变换与正余弦定理的学习总结

知识点

三角函数诱导公式
和差倍角公式
基本的三角恒等变换
正弦定理基本应用
余弦定理基本应用
射影定理

注意事项

  1. 这两章涉及的公式较多, 注意公式的运用以及代入运算不要出错, 尤其是不要漏各种\(\frac{1}{2}\)
  2. 勿忘分类讨论

一些较为陌生的公式和构造

  1. 三角函数开根 注意不要漏\(\frac{1}{2}\) \[\sqrt{1 \pm \sin \alpha} = \sqrt{\left( \sin \frac{a}{2} \pm \cos \frac{a}{2} \right)^2}\] \[\sqrt{1 + \cos \alpha} = \sqrt{2 \cos^2 \frac{\alpha}{2}}\] \[\sqrt{1 - \cos \alpha} = \sqrt{2 \sin^2 \frac{\alpha}{2}}\]
  2. 三角函数降幂 \[\sin^2 \alpha = \frac{1}{2} (1 - \cos 2 \alpha)\] \[\cos^2 \alpha = \frac{1}{2} (1 + \cos 2 \alpha)\] \[\tan^2 \alpha = \frac{1 - 2 \cos \alpha}{1 + 2 \cos \alpha}\]
  3. 正弦与余弦相乘的降幂 \[\sin \alpha \cdot \cos \alpha = \frac{1}{2} \sin 2 \alpha\]
  4. 正弦相减或余弦相减(重要): 我们令\[\omega = \frac{\alpha + \beta}{2}, \phi = \frac{\alpha - \beta}{2}\] 则有 \[\cos \alpha - \cos \beta = 2 \sin \omega \cdot \sin \phi\] \[\sin \alpha - \sin \beta = 2 \cos \omega \cdot \sin \phi\]
  5. \(\tan \alpha\)\(\sin 2 \alpha\), \(cos 2 \alpha\)的相互转化 \[\tan^2 \alpha = \frac{1 - \cos 2 \alpha}{1 + \cos 2 \alpha}\] \[\sin 2 \alpha = \frac{2 \tan \alpha}{1 + \tan^2 \alpha}\] \[\cos 2 \alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha}\] 第一个公式的证明略; 后两个公式的证明: 等式左边除以\(1 = \cos^2 \alpha + \sin^2 \alpha\), 得到\[\sin 2\alpha = \frac{2 \sin \alpha \cdot \cos \alpha}{\sin^2 \alpha + \cos^2 \alpha} = \frac{2 \tan \alpha}{1 + \tan^2 \alpha}\] \[\cos 2 \alpha = \frac{\cos^2 \alpha - \sin2 \alpha}{\sin^2 \alpha + \cos^2 \alpha} = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha}\]
  6. 在一个三角形中, \[\sin(A + B) = \sin(C)\]
  7. 三角形面积公式有\[S = \frac{a \cdot b \cdot c}{4R}\] 证明: 根据正弦定理, 有 \[S = \frac{1}{2} a \cdot b \cdot \sin C = \frac{1}{2} \cdot \frac{a \cdot b \cdot c}{2R} = \frac{a \cdot b \cdot c}{4R}\]
  8. 射影定理: 在\(\triangle ABC\)中, \[b = a \cos C + c \cos A\] 证明: 正弦定理, 略.

转载于:https://www.cnblogs.com/Zeonfai/p/6805448.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值