梁瑛平的博客

私信 关注
BIT可达鸭
码龄2年

公众号:可达鸭的深度学习教程,B站:BIT可达鸭,Github:Sharpiless

  • 354,085
    被访问量
  • 183
    原创文章
  • 9,200
    作者排名
  • 1,360
    粉丝数量
  • 毕业院校 北京理工大学
  • 目前就职 18级本科生
  • 于 2019-04-18 加入CSDN
获得成就
  • 博客专家认证
  • 获得838次点赞
  • 内容获得684次评论
  • 获得3,135次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #图像处理#深度学习#神经网络#算法#视觉/OpenCV#TensorFlow#Python
TA的专栏
  • 深度学习-OCR
    2篇
  • 深度学习-目标检测
    52篇
  • 遥感图像目标检测
    6篇
  • 强化学习
    2篇
  • LeetCode
    1篇
  • 前后端分离
    1篇
  • 数字图像处理
    6篇
  • 前端开发
    2篇
  • 深度学习-语音分类
    2篇
  • 数据集整理
    2篇
  • 大学本科——学年总结
    1篇
  • 深度学习-NLP
  • Paddle项目
    8篇
  • 论文阅读笔记
    30篇
  • 视频人脸中的心率检测
    1篇
  • 水下目标检测
    5篇
  • 基于深度学习的脑电图识别
    13篇
  • 图计算系统/图神经网络
    8篇
  • 社区发现/图聚类算法
    2篇
  • 大数据
    2篇
  • 深度学习-机器翻译
    1篇
  • 深度学习-语音识别
    1篇
  • 深度学习-图像识别
    23篇
  • 深度学习-语义分割
    10篇
  • 深度学习-点云识别和分割
    5篇
  • 运动目标检测
    7篇
  • 机器学习基础
    2篇
  • 算法实践
    6篇
  • 好玩的项目
    8篇
  • Opencv-python教程
    3篇
  • CCF计算机资格认证
    2篇
  • 网络爬虫
    4篇
  • 深度学习-基础
    11篇
  • 深度学习-GAN
    5篇
  • Python基础
    1篇
  • 图像处理
    7篇
  • Tensorflow
    5篇
  • 离散数学编程
    4篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

【文字识别】PaddleOCR实战和算法解读

【文字识别】PaddleOCR实战和算法解读项目地址:PaddleOCR:基于PaddleOCR的中软杯国二项目:PaddleOCR简介:项目简介:在线体验:模型介绍:文本检测算法:1. 支持的开源算法:2. 开源算法精度:3. DB 算法简介:算法简介:模型结构:项目地址:PaddleOCR:https://github.com/PaddlePaddle/PaddleOCR基于PaddleOCR的中软杯国二项目:https://aistudio.baidu.com/aistudio/projec
原创
236阅读
2评论
1点赞
发布博客于 1 月前

全球人工智能技术创新大赛【赛道二】第三周初赛top-2分享

全球人工智能技术创新大赛【赛道二】第三周初赛top-2分享本文禁止转载!比赛地址:排名截图:使用GPU平台:AI Studio简介:特点:使用深度学习框架:PaddleDetection简介:使用算法:数据预处理:图像分割:有重叠的滑窗:多模型预测:数据增强:预训练模型:后续思路:我的公众号:本文禁止转载!作者的其他主页:B站:https://space.bilibili.com/470550823CSDN:https://blog.csdn.net/weixin_44936889AI
原创
326阅读
0评论
1点赞
发布博客于 1 月前

【小白话CV】CycleGAN论文解读+代码实战(萌宠转宝可梦)

《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》论文地址:源码地址:论文简介:模型结构:损失函数:Adversarial Loss(对抗损失):Cycle Consistency Loss(循环一致性损失):Full Objective(总损失):训练策略:项目实战——萌宠转宝可梦:爬取数据:创建colab应用:数据集格式:开始训练:论文地址:https://arxiv.org/abs/17
原创
141阅读
1评论
2点赞
发布博客于 1 月前

基于百度飞桨的单/多镜头行人追踪(非官方Baseline)

使用PaddleX的Yolov3目标检测和Sort目标追踪算法,实现行人检测和追踪,并在MOT上测试
原创
1204阅读
10评论
4点赞
发布博客于 1 月前

2021年 遥感图像目标检测SOTA模型及排行榜

2021年 遥感图像目标检测SOTA模型及排行榜Baseline:DOTA1.0 (Task1)DOTA1.0 (Task2)可视化不同模型性能(mAP+文章+源码):DOTA1.0 (Task1)DOTA1.0 (Task2)DOTA1.5 (Task1)DOTA1.5 (Task2)相关文章:Baseline:DOTA1.0 (Task1)ModelBackboneTraining dataVal datamAPModel LinkTrickslr schdData Aug
原创
436阅读
2评论
2点赞
发布博客于 1 月前

【已经开源】基于opencv+pyqt的人像美容系统

基于opencv+pyqt的美颜软件本文禁止转载!源码地址:使用效果:支持功能:安装依赖:下载权重:运行代码:关注我的公众号:本文禁止转载!源码地址:https://github.com/Sharpiless/opencv-pyqt-makeup-software使用效果:演示视频:https://www.bilibili.com/video/BV19t4y1B7ie 用Opencv给我冰冰老婆美颜化妆?
原创
297阅读
2评论
1点赞
发布博客于 1 月前

基于百度飞桨的单/多镜头行人追踪——PaddleDetection

PaddleDetection训练单/多镜头行人追踪模型项目效果:项目AI Studio:https://aistudio.baidu.com/aistudio/projectdetail/1563160视频地址:https://www.bilibili.com/video/BV1mz4y1y79G/!zip code.zip -r work/PaddleDetection-release-2.0-rc/ 简介PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测
原创
970阅读
3评论
8点赞
发布博客于 1 月前

用DQN强化学习算法玩“合成大西瓜”!

用DQN强化学习算法玩“合成大西瓜”!完整代码地址:1. 安装依赖库2. 设置环境变量3. 构建多层神经网络4. 构建DQN算法、Agent和经验池5. 创建Agent实例6. 训练模型7. 游戏环境补充说明7.1 游戏共有11种水果:7.2 碰撞检测:7.3 奖励机制:7.4 惩罚机制:7.5 输入特征:feature_t:feature_p:8. 多进程训练9. 我的公众号 当我们用强化学习训练AI玩合成大西瓜 ...
原创
463阅读
2评论
4点赞
发布博客于 2 月前

【改进版】全国大学生智能车竞赛——车道线检测Baseline

【改进版】全国大学生智能车竞赛——车道线检测Baseline解压数据集数据集统计随机数据增强均衡化数据集统计均衡化后的数据划分数据集:执行训练中值滤波+闭运算提交结果我的公众号解压数据集默认解压到/data目录下,该目录会在每次进入环境时重置,但可以节省项目启动时间。!unzip -oq /home/aistudio/data/data68698/智能车数据集.zip -d /home/aistudio/data数据集统计import osimport cv2import numpy as
原创
393阅读
1评论
2点赞
发布博客于 2 月前

用强化学习DQN算法玩合成大西瓜游戏!(提供Keras版本和Paddlepaddle版本)

本文禁止转载,违者必究!用强化学习玩合成大西瓜代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本。B站:https://space.bilibili.com/470550823CSDN:https://blog.csdn.net/weixin_44936889AI Studio:https:/
原创
2113阅读
4评论
2点赞
发布博客于 2 月前

【魔改版】全国大学生智能车竞赛线上资格赛-车道线检测Baseline

【魔改版】全国大学生智能车竞赛线上资格赛-车道线检测Baseline解压数据集数据集统计均衡化数据集划分数据集:执行训练中值滤波提交结果关注我的公众号:解压数据集默认解压到/data目录下,该目录会在每次进入环境时重置,但可以节省项目启动时间。!unzip -oq /home/aistudio/data/data68698/智能车数据集.zip -d /home/aistudio/data数据集统计import osimport cv2import numpy as npfrom tqdm
原创
283阅读
2评论
1点赞
发布博客于 2 月前

【LeetCode刷题日记】持续更新中...

【LeetCode刷题日记】持续更新中...Day-06-2021-02-04-栈基础题:224. 基本计算器155. 最小栈150. 逆波兰表达式求值Day-05-2021-02-03-基础题:102. 二叉树的层序遍历(递归)102. 二叉树的层序遍历(队列)103. 二叉树的锯齿形层序遍历Day-04-2021-02-02-基础题:42. 接雨水20. 有效的括号94. 二叉树的中序遍历96. 不同的二叉搜索树Day-03-2021-02-01-链表基础题:61. 旋转链表82. 删除排序链表中的重复
原创
203阅读
0评论
0点赞
发布博客于 2 月前

基于PaddleX+Flask+VUE的眼部医疗辅助系统(前后端分离)

基于PaddleX+Flask+VUE的眼部医疗辅助系统(前后端分离)视频链接:https://www.bilibili.com/video/BV1k54y1s7j9代码已经上传Github:https://github.com/Sharpiless/PaddleX-Flask-VUE-demo1. 项目简介:本项目基于PaddleX提供的FastSCNN语义分割模型,在眼部图像视盘分割数据集上进行训练,并开发了前后端分离项目。后端代码基于Flask开发,前端WEB界面基于VUE开发。2. 训
原创
304阅读
0评论
0点赞
发布博客于 2 月前

北邮,北航,电子科技大,南京大学,华南理工大学,南京理工大学,大连理工大学 这几个大学的同学有人想要做图森未来的校园大使吗想做的可以私戳我~

发布Blink于 2 月前

BIT 数字图像处理 实验3:Normalized cuts and image segmentation

#include <opencv2/opencv.hpp>#include <iostream>#include <string>#include <tclap/CmdLine.h>#include <cmath>#include <boost/numeric/ublas/symmetric.hpp>#include <boost/numeric/ublas/matrix_sparse.hpp>#include
原创
121阅读
0评论
0点赞
发布博客于 3 月前

【动漫风格迁移】基于AnimeGAN的安卓APP工具

【动漫风格迁移】基于AnimeGAN的安卓APP工具源码地址:使用效果:使用方法:1. 克隆TensorFlow示例的源代码:2. 将示例应用程序导入到Android Studio:3. 运行Android应用程序:APP安装包下载地址:源码地址:https://github.com/bluishfish/AnimeGAN_android使用效果:使用方法:1. 克隆TensorFlow示例的源代码:将TensorFlow示例GitHub存储库克隆到本地。git clone https:/
原创
713阅读
1评论
1点赞
发布博客于 3 月前

BIT数字图像处理大作业——纯C++实现车道线检测

BIT数字图像处理大作业——纯C++实现车道线检测本文禁止转载,违者必究!1. 前言:2. 基本思路:3. 灰度图变换:4. 直方图均衡化:5. 阈值分割:6. 中值滤波:7. 边缘检测:8. 直线检测:9. 后续思路:获取完整项目代码:本文禁止转载,违者必究!1. 前言:没错这又是大作业,这次是数字图像处理的作业:本来打算用 LaneNet 搞定,结果发现要求是:不能用神经网络(即不能用图像分割算法了);除读取和显示图像,不能用Opencv(即不能调包);所以只能老老实实手写那些图像
原创
2183阅读
5评论
4点赞
发布博客于 3 月前

在WEB端部署YOLOv5目标检测(Flask+VUE)

在WEB端部署YOLOv5目标检测(Flask+VUE)本文禁止转载,违者必究!1. 先看效果:2. YOLOv5模型训练:3. YOLOv5模型预测:4. Flask 部署:5. VUE前端:6. 启动项目:关注我的公众号:本文禁止转载,违者必究!1. 先看效果: 在WEB端部署YOLOv5目标检测(Flask+VUE) 视频链接:https://www.bilibili.com
原创
1491阅读
7评论
8点赞
发布博客于 3 月前

VUE开发入门——手把手教你做一个备忘录网站

VUE开发入门——手把手教你做一个备忘录网站(一)本文禁止转载,违者必究!1. 前言:2. VUE简介:3. VUE安装和环境配置:4. 创建VUE项目——Hello World:4.1 创建基础项目:4.2 文件类型解析:4.3 .vue 文件(单文件组件):4.4 运行项目:4.5 打包项目:5. 在网页中显示标题:6. 添加待做事项:6.1 创建一个ToDoItem组件:6.2 在应用程序中使用TodoItem组件:6.3 使用props使组件动态化:6.4 Vue的数据对象:6.5 给Todos一个
原创
273阅读
1评论
0点赞
发布博客于 3 月前

【开发实录】基于YOLOv5+DeepSort的行人监控电子围栏系统

【开发实录】基于YOLOv5+DeepSort的行人监控电子围栏系统1. 项目目标:2. 项目演示:3. YOLOv5目标检测+DeepSort目标追踪:4. UI界面开发:4.1 登录界面:4.2 加载界面:4.3 主界面:4.4 美化界面:5. UI功能开发:5.1 绑定槽函数:5.2 在UI中显示视频:5.3 相应鼠标绘制区域:5.4 其他细节:6. 部署方案:6.1 端侧视频推流:6.2 Flask部署:7. 联系作者:1. 项目目标:本项目目标为开发基于YOLOv5+DeepSort的行人监控
原创
2977阅读
7评论
12点赞
发布博客于 3 月前

MathorCup赛题开源方案——遥感图像地块分割与提取

赛道B 遥感图像地块分割与提取赛题:代码:赛题:耕地的数量和质量是保持农业可持续发展的关键,利用卫星遥感影像可以识别并提取耕地,并对耕地进行遥感制图,准确的耕地分布能够为国家决策部门提供重要支撑。目前高精度的耕地信息提取主要还是依靠人工解译,耗费大量人力、财力且效率较低,因此,遥感图像的耕地识别算法研究将对耕地遥感制图提供重要帮助。资源三号(ZY-3)卫星是中国第一颗自主的民用高分辨率立体测绘卫星,通过立体观测,可以测制1∶5万比例尺地形图,为国土资源、农业、林业等领域提供服务,资源三号填补了中国立体
原创
419阅读
1评论
0点赞
发布博客于 3 月前

BIT 数字图像处理 编程作业1:图像卷积

对给定灰度图像(以矩阵形式输入,整型数),按照给定的卷积核(以矩阵形式输入,浮点数)进行卷积,卷积核不需要翻转,输出图像卷积结果(以矩阵形式输出)。要求:对图像边界处的卷积运算,在卷积核超出图像边界的地方,图像内容按零处理;卷积运算完需要四舍五入,按整型数输出结果,不用对数据范围进行处理,即输出数据可以大于255。输入:m nu v (u、v一定是奇数)m行n列的图像矩阵数据u行v列的卷积核输出:m行n列的图像矩阵数据 (空格相隔)#include <iostrea
原创
163阅读
0评论
0点赞
发布博客于 3 月前

Visual Studio Opencv4 报错【未定义标识符 “CV_BGR2Lab“】

新版本中色彩空间转换的标识符已经改了,但是文档似乎还没更新。解决方法:把 CV_BGR2Lab 改成 COLOR_BGR2Lab 即可。
原创
220阅读
0评论
0点赞
发布博客于 3 月前

【小白CV教程】YOLOv5+Deepsort实现车辆行人的检测、追踪和计数

【小白CV教程】YOLOv5+Deepsort实现车辆行人的检测、追踪和计数本文禁止转载!项目简介:YOLOv5检测器:DeepSort追踪器:运行demo:训练自己的模型:调用接口:创建检测器:调用检测接口:本文禁止转载!项目简介:使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。代码地址(欢迎star):https://github.com/Sharpiless/Yolov5-deepsort-inference最终效果:
原创
7556阅读
27评论
23点赞
发布博客于 3 月前

【中软杯国二开源】基于PaddleOCR和深度学习的企业实体识别

将用户拍摄的店铺照片经过OCR识别后通过NLP模型进行店铺名称的提取,然后通过店铺名称获取该店铺办理过的所有证照信息,方便用户进一步了解该店铺。
原创
910阅读
3评论
4点赞
发布博客于 3 月前

BIT 数字图像处理 实验1:图像滤波

数字图像处理第一次上机作业一、作业内容在空域中,对给定图像(lenna.jpg)进行高斯平滑滤波;在空域中,对给定图像(lenna.jpg)进行拉普拉斯锐化滤波。二、作业要求使用 C/C++ 语言实现滤波操作,代码需要体现具体的滤波过程,不能使用现成的滤波函数;自选滤波器的参数,提高在给定图像上的滤波效果。三、提交内容滤波后的结果图像;实验报告,包括实验原理、实验步骤、实验结果和实验分析;源码及注释。四、提交要求将提交的内容打包,压缩包命名为
原创
183阅读
0评论
0点赞
发布博客于 3 月前

BIT 数字图像处理 编程作业2:LZW编码

问题描述(Description)Lempel-Ziv-Welch(LZW)编码算法是一种无误差压缩算法,将定长码字分配给变长信源符号序列。 现请尝试对输入单张灰度图像进行LZW编码。输入(Input)输入格式如下面的例子所示。第一行为两个由空格隔开的数字M和N,分别代表图片的高和宽。接下来M行,每行有N个数字,每个数字代表图片相应位置的灰度值,相邻的数字由空格隔开。读取数据时要求以行优先的方式读取。例:4 439 39 126 12639 39 126 12639 39 126 1.
原创
207阅读
0评论
0点赞
发布博客于 3 月前

【Libtorch入门】在Windows使用C++部署YOLOv5模型

【Libtorch入门】使用C++部署YOLOv5目标检测本文禁止转载一、前言:二、安装Visual Studio 2017:三、下载Opencv3.3:四、下载Libtorch:五、配置VS项目属性:六、测试环境:七、YOLOv5推理:八、运行预测:九、修改为自己的模型:交流群:本文禁止转载一、前言:前面我们使用pytorch训练好了模型,具体可以看我这几篇:【小白CV教程】Pytorch训练YOLOv5并量化压缩(VOC格式数据集)【玩转YOLOv5】YOLOv5转openvino并进行部署
原创
3833阅读
31评论
7点赞
发布博客于 4 月前

【2020年总结】继往与开来、遗憾与期待(目前大三)

【2020年终总结】继往与开来、遗憾与期待零、博主信息:一、前言:二、 学业成绩:三、科创竞赛:四、科研论文:五、志愿活动:六、向党看齐:七、指导学弟(妹):零、博主信息:学校:北京理工大学学历:2018级本科,大三在读专业:计算机科学与技术一、前言:2020已经接近年末,回想一下,自己在年初,是那么的信誓旦旦,那么的豪情壮志,然而到现在又有多少遗憾没有完成?正好我们前几天进行完了德育答辩的中期检查,因此在这里写一些总结,反正写的不好一笑而过就ok。二、 学业成绩:学业成绩下滑比较严重,
原创
3680阅读
11评论
31点赞
发布博客于 4 月前

用Paddlepaddle做一个凡尔赛文学生成器

用Paddlepaddle做一个凡尔赛文学生成器本文禁止转载!1. 安装相关库2. 调用Paddlehub模型进行预训练3. 运行预测4. 改进方向:5. 交流群:本文禁止转载!之前微博上掀起了一股装逼文体的新热潮该文体先抑后扬​将装逼隐藏在浮于表面的抱怨之中装逼者总是在不经意间流露出贵族式的烦恼看似抱怨实则炫耀这样的写作手法被称作——凡尔赛文学本项目运用Paddlehub实现了根据关键词的凡尔赛文学自动生成器。1. 安装相关库! pip install xlrd! pip
原创
494阅读
0评论
2点赞
发布博客于 4 月前

【深度学习入门】基于PaddleX的驾驶员状态识别和Paddle-Lite部署

基于PaddleX的驾驶员状态识别和Paddle-Lite部署项目简介:目录:一、PaddleX 工具简介:二、数据集简介:三、定义数据加载器:四、定义并训练模型:MobileNet简介:DW Conv:PW Conv:(一)论文地址:(二)核心思想:(三)Platform-Aware NAS for Block-wise Search:3.1 MobileNetV3-Large:3.1 MobileNetV3-Small:(四)NetAdapt for Layer-wise Search:(五)Effic
原创
925阅读
1评论
2点赞
发布博客于 4 月前

【玩转YOLOv5】YOLOv5转openvino并进行部署

【玩转YOLOv5】YOLOv5的Openvino转换和部署本文禁止转载!1. YOLOv5环境配置:2. 修改模型文件:1. models/yolo.py2. models/export.py3. utils/torch_utils.py3. 训练模型:4. torch模型转onnx:5. onnx转openvino:5.1 激活环境:5.2 安装依赖:5.3 脚本转换:6. 模型测试:7. 交流群:本文禁止转载!1. YOLOv5环境配置:可以看我之前写的几篇:【小白CV教程】Pytorch训练
原创
3254阅读
20评论
4点赞
发布博客于 4 月前

【小白CV教程】Pytorch训练YOLOv5并量化压缩(VOC格式数据集)

【小白CV教程】Pytorch训练YOLOv5并量化压缩(VOC格式数据集)前言:1. 安装Anaconda:2. 创建虚拟环境:3. 安装pytorch:4. 下载源码和安装依赖库:5. 数据标注:5. 数据预处理:6. 下载预训练模型:7. 开始训练:8. 模型推理测试:9. 模型量化:前言:今天有时间,就写一下用yolov5训练自己数据集(自己标注的VOC格式),然后通过pytorch接口进行模型的量化压缩。最终效果:1. 安装Anaconda:Anaconda官网:https://ww
原创
1412阅读
8评论
4点赞
发布博客于 4 月前

【数据集】五子棋黑子、白子目标检测数据集(VOC)格式

数据集地址:https://github.com/Sharpiless/gobang-object-detection-dataset相关大作业进度的博客:【BIT大作业】人工智能+五子棋实战(一)棋子目标检测【BIT大作业】人工智能+五子棋实战(二)博弈搜索算法北理BIT人工智能大作业,写脚本收集了黑/白棋子检测数据集数据集为pygame游戏界面截图:这里使用PaddleX提供的YOLOv3目标检测算法。同时由于目标比较好识别,所以使用轻量级的MobileNet作为主干网络。写代码不
原创
527阅读
0评论
10点赞
发布博客于 4 月前

【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)

【小白CV】手把手教你用YOLOv5训练自己的数据集(从环境配置到模型部署)前言:1. 安装Anaconda:2. 创建虚拟环境:3. 安装pytorch:4. 下载源码和安装依赖库:5. 数据标注:5. 数据预处理:6. 下载预训练模型:前言:今天有时间,就写一下用yolov5训练自己数据集的博客吧。1. 安装Anaconda:Anaconda官网:https://www.anaconda.com/下载完成后打开一路Yes即可,只需要注意这里要将conda添加到PATH:安装完成后打
原创
11106阅读
34评论
42点赞
发布博客于 4 月前

【BIT大作业】人工智能+五子棋实战(二)博弈搜索算法

【BIT大作业】人工智能+五子棋实战(二)博弈搜索算法博弈树算法简介:代码实现:效果:博弈树算法简介:emmm可以看这个博主的博客:五子棋智能算法-博弈树算法思想详解代码实现:核心代码:# DFS: 博弈树搜索# ----------------------------------------------------------------------class searcher(object): # 初始化 def __init__(self): self.
原创
1169阅读
0评论
3点赞
发布博客于 4 月前

【风格迁移】用AnimeGAN转换视频到动漫风格

用AnimeGAN转换视频到动漫风格,已经打包好软件,无需配置环境~
原创
1279阅读
4评论
2点赞
发布博客于 5 月前

【BIT大作业】人工智能+五子棋实战(一)棋子目标检测

【BIT大作业】人工智能+五子棋实战(一)棋子目标检测任务描述:构建棋盘:收集数据:训练模型:检测效果:总结:有需求的大佬欢迎加入我的接单群,需求详情请群里戳群主任务描述:(这是基础课的作业就TM离谱)构建棋盘:这里使用PyQt5开发(GIthub有源码,稍作改动),效果如图:收集数据:由于棋子比较密集而且较小,自己标注的话进度很慢,所以我写了个小脚本,在下棋的过程中自动记录棋子的位置坐标和类别,并写入xml文件生成目标检测训练集。训练模型:这里使用PaddleX提供的YOLOv3目
原创
1911阅读
4评论
9点赞
发布博客于 5 月前

【Baseline】CCF遥感影像地块分割(非官方)

【Baseline】CCF遥感影像地块分割(非官方)使用DeepLabV3+使用DeepLabV3+!pip install paddlex -i https://mirror.baidu.com/pypi/simple!pip install imgaug -i https://mirror.baidu.com/pypi/simple# 设置使用0号GPU卡(如无GPU,执行此代码后仍然会使用CPU训练模型)import matplotlibimport osimport paddle
原创
2246阅读
7评论
6点赞
发布博客于 6 月前

【笔记】Lianru Gao的几篇论文

Lianru Gao的几篇论文前言一、MSF_SSD:1.1 摘要1.2 模型结构:1.2.1 采样和标注:1.2.2 目标检测模型:二、Ship Detection:1.1 摘要参考文献前言主要是Lianru Gao大佬他们实验室的三篇跟遥感图像检测相关的论文。一、MSF_SSD:1.1 摘要这篇文章提出的模型,应该是之前有不少人做过类似的,主要工作就是在SSD上添加了反卷积(DeConv)和连接操作(Concat),其实就是类似RetinaNet的模型。他在自己收集和标注的数据集上
原创
245阅读
1评论
2点赞
发布博客于 6 月前

华录杯运营就这?

发布Blink于 6 月前

【目标检测】2020年遥感图像目标检测综述

【目标检测】2020年遥感图像目标检测综述本文禁止转载1. DOTA数据集:2. 待解决的问题:2.1 目标小而密集:2.2 任意旋转角:2.3 Anchor匹配问题:2.4 回归任务的边界问题:2.5 实例级噪声:3. BaselineBaselineBaseline:4. 几个经典模型:4.1 R2CNNR^2CNNR2CNN:4.1.1 论文地址:4.1.2 模型结构:4.2 SCRDetSCRDetSCRDet:4.2.1 论文地址:4.2.2 模型结构:SF-Net:MDA-Net:Rotatio
原创
8123阅读
0评论
27点赞
发布博客于 8 月前

【2020中国华录杯】吸烟打电话检测Baseline

2020中国华录杯·数据湖算法大赛—定向算法赛(吸烟打电话检测)!pip install paddlex!pip install imgaug# 设置工作路径import osos.chdir('/home/aistudio/work/')os.mkdir('./raw_data')os.mkdir('./new_data')os.mkdir('./new_data/train/')os.mkdir('./new_data/test/')# 解压代码!unzip /home/ai
原创
2155阅读
8评论
2点赞
发布博客于 8 月前

【论文阅读笔记】Simple and Deep Graph Convolutional Networks

【论文阅读笔记】Simple and Deep Graph Convolutional Networks1. 论文地址:2. 摘要:3. 简介:3.1 图卷积神经网络:3.2 传统GCN的局限性:3.3 一些解决方案:3.4 本文的方案:4. 相关研究:4.1 符号表示:4.2 GCN:5. GCNII 模型:5.1 模型简介:5.2 初始残差连接:5.3 恒等映射:5.4 迭代收缩阈值:6. 实验结果:1. 论文地址:论文:https://arxiv.org/pdf/2007.02133.pdf源码
原创
1079阅读
1评论
1点赞
发布博客于 8 月前

【图神经网络综述】一文道尽GNN原理、框架和应用

【2020 图神经网络综述】A Comprehensive Survey on Graph Neural Networks1. 摘要:2. 简介:2.1 为什么要用图表示数据:2.2 GNN与network embedding:2.3 GNN与Graph Kernel:2.4 一些符号表示:论文地址:https://arxiv.org/abs/1901.005961. 摘要:近年来,深度学习已经彻底改变了许多机器学习任务,从图像分类和视频处理到语音识别和自然语言理解。这些任务中的数据通常在欧几里德空间
原创
3087阅读
0评论
11点赞
发布博客于 8 月前

【超越YOLOv4】百度自研超高效目标检测器——PP-YOLO

【超越YOLOv4】百度自研超高效目标检测器——PP-YOLO前言:简介:网络结构:Backbone:Detection Neck:Detection Head:优化技巧:Larger Batch Size:EMA:DropBlock:IoU Loss:IoU Aware:Grid Sensitive:Matrix NMS:CoordConv:SPP:实验结果:前言:之前,YOLO系列(v1-v3)作者 Joe Redmon 宣布不再继续CV方向的研究,引起学术圈一篇哗然。YOLO之父宣布退出CV界,
原创
5651阅读
4评论
8点赞
发布博客于 9 月前

【深度学习-目标检测】X光安检图像识别挑战赛Baseline

【深度学习-目标检测】X光安检图像识别挑战赛Baseline比赛地址:Baseline:比赛地址:http://challenge.xfyun.cn/topic/info?type=XrayBaseline:import matplotlibmatplotlib.use('Agg') import osos.environ['CUDA_VISIBLE_DEVICES'] = '0'import paddlex as pdxos.chdir('/home/aistudio/work/')
原创
1504阅读
4评论
1点赞
发布博客于 9 月前

【深度学习小白教程】(二)目标检测算法入门

【深度学习小白教程】(二)目标检测算法入门主要是我给我们学校的同学直播课做的PPT,未经作者允许,禁止转载哦~
原创
478阅读
0评论
2点赞
发布博客于 9 月前

【深度学习小白教程】(一)图像分类算法入门

【深度学习小白教程】(一)图像分类算法入门主要是我给我们学校的同学直播课做的PPT,未经作者允许,禁止转载哦~
原创
645阅读
0评论
2点赞
发布博客于 9 月前

【深度学习-语音分类】语种识别挑战赛Baseline

【深度学习-语音分类】语种识别挑战赛Baseline提取特征并保存:训练集:测试集:转换数据格式:搭建并训练模型:生成预测结果:比赛地址:http://challenge.xfyun.cn/topic/info?type=multilingual提取特征并保存:这里提取音频文件logmel特征并保存:训练集:import osimport waveimport librosaimport numpy as npfrom tqdm import tqdmimport pickle as
原创
717阅读
5评论
1点赞
发布博客于 9 月前

【图神经网络】异构时间图卷积网络HTGCN——用于社区检测

【图神经网络】异构时间图卷积网络——用于社区检测论文地址:摘要:研究关键点:核心解决方案:几个定义:1. 异构图:2. 异构图的邻接矩阵:3. Meta-Path(元路径):4. 问题陈述:HTGCN算法:1. 异构GCN组件:2. 残差压缩聚合组件(ResCAC):2.1 元路径:2.2 Hadamard积:论文地址:《Heterogeneous-Temporal Graph Convolutional Networks: Make the Community Detection Much Bette
原创
753阅读
4评论
5点赞
发布博客于 9 月前

【遥感目标检测】基于遥感图像的目标检测算法综述(DOTA/R2CNN/ROI Transformer/CAD-Net/SCRDet/Gliding Vertex)

【遥感目标检测】基于遥感图像的目标检测算法综述(DOTA/R2CNN/ROI Transformer/CAD-Net/SCRDet/Gliding Vertex)DOTA数据集:1.简介:2.航拍图像特点:R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection1.主要贡献:2.模型结构:3.实验结果:Learning roi transformer for oriented object detection in ae
原创
2660阅读
0评论
4点赞
发布博客于 9 月前

10w合影

发布Blink于 9 月前

【深度学习-语音分类】婴儿啼哭声识别挑战赛Baseline

【深度学习-语音分类】婴儿啼哭声识别挑战赛Baseline比赛简介:Baseline:1. 加载并保存数据:2. 设置训练数据:3. 搭建LSTM模型:最终结果:比赛简介:比赛地址:http://challenge.xfyun.cn/topic/info?type=baby-cryingBaseline:1. 加载并保存数据:import osimport waveimport numpy as npfrom tqdm import tqdmimport pickle as pkl
原创
2538阅读
9评论
5点赞
发布博客于 9 月前

【深度学习-图像识别】脑PET图像分析和疾病预测Baseline

【深度学习-图像识别】脑PET图像分析和疾病预测比赛简介:Baseline:1. 读取数据2. 定义数据加载器:3. 构建模型:4. 训练模型:5. 生成预测结果:最终提交结果:这里提供一个baseline;比赛简介:比赛地址:http://challenge.xfyun.cn/topic/info?type=PET数据长这个样子:Baseline:1. 读取数据base = './train'count = 0with open(os.path.join('train_list.t
原创
2760阅读
14评论
3点赞
发布博客于 9 月前

【数据集合集】最全最新——智能交通和无人驾驶相关数据集

【数据集合集】智能交通和无人驾驶相关一、无人驾驶数据集:1. The H3D Dataset:2. nuscenes:3. ApolloCar3D:4. KITTI Vision Benchmark Suite:5. Cityscape Dataset:6. Mapillary Vistas Dataset:一、无人驾驶数据集:1. The H3D Dataset:官网:https://usa.honda-ri.com/h3d论文地址:https://arxiv.org/abs/1903.01
原创
3852阅读
4评论
12点赞
发布博客于 9 月前

【遥感图像目标检测】数据集DOTA: A Large-scale Dataset for Object Detection in Aerial Images

【遥感图像目标检测】数据集DOTA: A Large-scale Dataset for Object Detection in Aerial Images1. 论文:2. 摘要:3. 数据统计:4. 下载地址:1. 论文:论文地址:https://arxiv.org/pdf/1711.10398.pdf2. 摘要:目标检测是计算机视觉中的一个重要而富有挑战性的问题。尽管过去十年已经见证了目标检测的主要进步的自然场景,但由于缺乏好的注释数据集对象的空中场景,遥感目标检测领域进展缓慢。为了推进对地
原创
2175阅读
4评论
2点赞
发布博客于 9 月前

玩腻了小游戏?Paddle手势识别玩转游戏玩出新花样!

PaddlePaddle实现手势识别玩转吃豆豆!文章目录:1. 手势数据采集2. PaddleX训练模型3. 测试手势识别模型4. 测试游戏种手势控制5. 大功告成~1. 手势数据采集:2. PaddleX训练模型2.1 定义数据集2.2 使用ResNet18训练模型3 测试手势识别模型:4. 测试游戏中手势控制:5. 大功告成演示视频我放到Youtube了(因为B站审核太慢了,,,)更新,B站审核通过啦!关于作者:联系我们:文章目录:1. 手势数据采集2. PaddleX训练模型3. 测试手势识
原创
2337阅读
3评论
5点赞
发布博客于 10 月前

【深度学习-图像识别】基于GhostNet进行ImageNet上1000类别的图像识别

GhostNet: MoreFeaturesfromCheapOperations(一)论文地址:(二)核心思想:(三)特征冗余:(四)传统卷积的问题:(五)Ghost Module for More Features(六)Ghost bottleneck:(七)实验结果:联系我们:(一)论文地址:https://arxiv.org/abs/1911.11907检测效果:运行demo.py(需要代码和模型权重的请私戳我哦,联系方式见文章末)(二)核心思想:作者为了进一步压缩 CNN 网络
原创
765阅读
2评论
3点赞
发布博客于 10 月前

【社区发现/图聚类算法】ppSCAN:Parallelizing Pruning-based Graph Structural Clustering

【社区发现/图聚类算法】ppSCAN:Parallelizing Pruning-based Graph Structural Clustering一、论文地址:二、摘要:三、问题阐述:四、基础算法:五、分析和讨论:5.1 性能瓶颈:5.2 并行化的挑战:六、并行化算法:6.1 优化方法:6.2 程序伪代码:Role Computing:Core and Non-Core Clustering:Degree-Based Dynamic Task Scheduling:Vectorized Pivot-bas
原创
608阅读
2评论
2点赞
发布博客于 10 月前

【社区发现/图聚类算法】pSCAN: Fast and exact structural graph clustering

【社区发现/图聚类算法】pSCAN: Fast and exact structural graph clustering一、论文地址:二、任务简介:三、SCAN算法:四、PSCAN算法:4.1 摘要:4.2 任务介绍:4.3 现有方法的不足:4.4 本文的贡献:4.5 一些基本概念:4.5.1 定义一:4.5.2 定义二:4.5.3 定义三:4.5.4 定义四:4.5.5 定义五:4.6 SCAN算法分析:4.7 新的范式:4.7.1 观察一:4.7.2 观察二:4.7.3 观察三:4.7.4 范式:集群
原创
1069阅读
1评论
5点赞
发布博客于 10 月前

【数据集】PASCAL VOC2012数据集百度网盘链接

更新日期2020/06/01链接:https://pan.baidu.com/s/1IPJPzbIdzdJcZolCmoRwDA提取码:h21g链接过期的话评论里@一下我;
原创
1752阅读
8评论
3点赞
发布博客于 10 月前

【社区发现算法】SCAN: A Structural Clustering Algorithm for Networks

SCAN: A Structural Clustering Algorithm for Networks一、论文地址:二、任务简介:三、核心思想:四、算法简介:4.1 传统算法的不足:4.2 提出改进目标:4.3 算法特点:五、一些基础概念:基本图:节点相似度:ϵ - 邻居:核节点:直接可达:可达:相连:相连聚类:桥节点:离群点:引理一:引理二:六、算法详解:6.1 伪代码:6.2 算法详解:6.3 复杂度分析:七、算法评估:八、结论:一、论文地址:https://dl.acm.org/doi/pdf
原创
989阅读
1评论
4点赞
发布博客于 10 月前

【人脸检测+识别】基于FaceNet的人脸识别课堂签到系统(带GUI界面)

【人脸检测+识别】基于FaceNet的人脸识别课堂签到系统(带GUI界面)效果图:实际图 :1. 人脸数据库采集界面:2. 人脸签到界面:3. 源码:算法简介:总结:效果图:实际图 :1. 人脸数据库采集界面:2. 人脸签到界面:(可载入本地视频或者摄像头实时视频)3. 源码:(需要的请私聊)算法简介:该模块通过卷积神经网络将人脸图像映射为一个一维的特征向量,任何对比检测人脸特征和数据库中人脸的特征在特征空间的距离,从而计算人脸相似度并进行人脸匹配和识别,其基本流程为:使用MT
原创
2429阅读
1评论
11点赞
发布博客于 10 月前

【开源项目】基于Opencv的视频车速检测

【开源项目】基于Opencv的视频车速检测1. 源码地址:2. 效果图:3. 代码:1. 源码地址:https://github.com/shreyapamecha/Speed-Estimation-of-Vehicles-with-Plate-Detection2. 效果图:3. 代码:import cv2import dlibimport timeimport threadingimport mathcarCascade = cv2.CascadeClassifier('myh
原创
2712阅读
2评论
9点赞
发布博客于 1 年前

【图算法】社区发现算法——Fast unfolding

【图算法】社区发现算法——Fast unfolding1. 社区划分问题的定义:2. 社区划分的评价标准:3. Fast unfolding算法:3.1 Fast Unfolding算法的基本思路:3.2 算法流程:4. 代码实现:4.1 Python实现:4.2 算法测试:4.3 测试结果:参考博客:https://blog.csdn.net/google19890102/article/details/486602391. 社区划分问题的定义:在社交网络中,用户相当于每一个点,用户之间通过互相的关
原创
1445阅读
1评论
3点赞
发布博客于 1 年前

【数据结构基础】五大排序算法的C++实现(冒泡,选择,插入,归并,快排)

【数据结构基础】各大排序算法的C++实现
原创
195阅读
0评论
4点赞
发布博客于 1 年前

【比赛记录】2020国际大数据竞赛:高传染性传染病的传播趋势预测(二)建模和训练

【比赛记录】2020国际大数据竞赛:高传染性传染病的传播趋势预测(二)建模和训练一、比赛地址:二、比赛简介:竞赛背景:任务描述:三、数据提取:一、比赛地址:2020第六届百度&西安交大大数据竞赛暨IKCEST第二届“一带一路”国际大数据竞赛二、比赛简介:竞赛背景:本届大数据竞赛在中国工程院、教育部高等学校大学计算机课程教学指导委员会及丝绸之路大学联盟的指导下,由联合国教科文组织国际工程科技知识中心(IKCEST)、中国工程科技知识中心(CKCEST)、百度公司及西安交通大学共同主办,旨在
原创
2145阅读
5评论
6点赞
发布博客于 1 年前

【深度学习入门】基于 ResNet50 的狗狗品种识别

基于 ResNet50 的狗狗品种识别1. 效果预览:2. ResNet算法详解:2.1 论文地址:2.2 核心思想:2.3 网络结构:2.3.1 残差单元:2.3.2 改进单元:2.4 实现代码:2.5 实验结果:3. 数据集简介:4. 训练模型:5. 测试图片:1. 效果预览:(似乎有奇怪的东西混进去了)2. ResNet算法详解:这个我写过一个更详细的:残差神经网络ResNet系列网络结构详解:从ResNet到DenseNet这里简单复述一下:2.1 论文地址:《Deep R
原创
1958阅读
1评论
7点赞
发布博客于 1 年前

【Tensorflow报错】UnrecognizedFlagError: Unknown command line flag 'f'

在配置文件中加入:tf.app.flags.DEFINE_string('f', '', 'kernel')
原创
383阅读
0评论
1点赞
发布博客于 1 年前

【比赛记录】2020国际大数据竞赛:高传染性传染病的传播趋势预测(一)初读数据

020国际大数据竞赛:高传染性传染病的传播趋势预测(一)初读数据一、比赛地址:二、比赛简介:竞赛背景:任务描述:数据集:一、比赛地址:2020第六届百度&西安交大大数据竞赛暨IKCEST第二届“一带一路”国际大数据竞赛二、比赛简介:竞赛背景:本届大数据竞赛在中国工程院、教育部高等学校大学计算机课程教学指导委员会及丝绸之路大学联盟的指导下,由联合国教科文组织国际工程科技知识中心(...
原创
2787阅读
7评论
1点赞
发布博客于 1 年前

【深度学习入门】Paddle实现人脸检测和表情识别(基于TinyYOLO和ResNet18)

【深度学习入门】Paddle实现人脸检测和表情识别(基于YOLO和ResNet18)一、先看效果:训练及测试结果:UI 界面及其可视化:二、AI Studio 简介:平台简介:创建项目:三、创建AI Studio项目:创建并启动环境:下载数据:下载预训练模型:四、代码讲解:五、算法详解:YOLO 算法详解:ResNet 算法详解:欢迎关注我的主页~博主主页:https://blog.csdn.n...
原创
1654阅读
9评论
3点赞
发布博客于 1 年前

【深度学习入门】Paddle实现车辆检测和车辆类型识别(基于YOLOv3和ResNet18)

Paddle实现车辆检测和车辆类型识别(基于YOLOv3和ResNet18)
原创
15045阅读
22评论
30点赞
发布博客于 1 年前

【图计算系统】小白入门(一):图计算系统的基本概念、开源框架及其应用

图计算系统的基本概念、开源框架及其应用一、图结构概论:1.1什么是图?1.2 图处理的难点:1.3 图储存方式:(1) 邻接矩阵:(2) 邻接表:(3) 十字链表(有向图):(4) 邻接多重表(无向图):(5) 边集数组(权重图):二、图计算概论:2.1 基本概念:2.2 开源框架:Ligra:Gemini:Plato:2.3 图计算的实现:2.4 图计算的应用:总结:如非作者允许,本文禁止转载...
原创
2345阅读
0评论
5点赞
发布博客于 1 年前
【深度学习入门】Paddle实现cifar-10(✈之类)识别详解(基于ResNet)
发布Blink于 1 年前

【深度学习入门】Paddle实现cifar-10(✈之类)识别详解(基于ResNet)

深度学习入门】Paddle实现cifar-10(????????✈之类)识别详解(基于ResNet)0. 先看效果:1. 数据集介绍:2. 代码:1. 导入需要的包:2. 下载数据:3. 定义数据加载器:4. 定义网络结构:5. 定义输入数据6. 获取分类器:7. 获取损失函数和准确率:8. 定义优化方法9. 使用GPU计算:10. 定义训练的参数:11. 加载预训练模型(如果有的话):12. 开始训练:13...
原创
11545阅读
8评论
7点赞
发布博客于 1 年前

【小白目标检测】手把手教你做视频中的实时目标检测(基于Pelee算法)

手把手教你做视频中的实时目标检测(基于Pelee算法)0. 先看效果:1. 算法详解:2. 下载源码:3. 运行检测:0. 先看效果:1. 算法详解:可以看我这一篇:【论文阅读笔记】Pelee: A Real-Time Object Detection System on Mobile Devices这里简单复述一下:作者在 2016 年提出了一个基于 DenseNet 的叫做 P...
原创
12810阅读
16评论
8点赞
发布博客于 1 年前
【突破二次元壁!】手把手教你用AnimeGAN将风景图转换成宫崎骏动漫风
发布Blink于 1 年前

【突破二次元壁!】手把手教你用AnimeGAN将风景图转换成宫崎骏动漫风

【突破二次元壁!】手把手教你用AnimeGAN将风景图转换成宫崎骏动漫风!这项来自武汉大学和湖北工业大学的研究,采用的是神经风格迁移 + 生成对抗网络(GAN)的组合。今天我们就来尝试一下,使用这个模型来将真实世界的风景图转换...
原创
24993阅读
8评论
13点赞
发布博客于 1 年前

【深度学习入门】Paddle实现手写数字识别详解(基于DenseNet)

【深度学习入门】Paddle实现手写数字识别(基于DenseNet)OK,因为课程需要就来做了一个手写数字(当初就是这个小项目入的坑hahhh),因为必须在百度的 AI Studio 上进行,所以只能用 Paddle,看了一下 Paddle 的文档,结论是:这不就是 tensorflow + torch 的结合体吗hahhh?所以还是比较容易写这个数字识别的 demo的;结论是:这不就是 tensorflow + torch 的结合体吗hahhh?所以还...
原创
1517阅读
2评论
3点赞
发布博客于 1 年前
【语义分割小白教程】手把手教你训练自己的数据集(基于轻量级的FCN-DenseNet)
发布Blink于 1 年前

【语义分割小白教程】手把手教你训练自己的数据集(基于轻量级的FCN-DenseNet)

【语义分割小白教程】手把手教你训练自己的数据集(基于轻量级的FCN-DenseNet)0. 任务描述:1. 标注数据:1.1 Labelme 的安装:1.2 Labelme 的使用:1.3 转换标注格式:2. 数据的目录结构:3. 下载源码:4. 下载预训练模型:5. 安装 pytorch:6. 运行训练:0. 任务描述:正好这几天有时间,就写一下一个小白教程,用来教大家如何用一个轻量级的 F...
原创
3394阅读
22评论
12点赞
发布博客于 1 年前
【深度学习模型】可训练自己数据集,包括多种高精度/轻量级目标检测、语义分割、目标追踪、人脸检测识别等
发布Blink于 1 年前
【基于深度学习的脑电图识别】手把手教你使用 1D 卷积和 LSTM 混合模型做 EEG 信号识别
发布Blink于 1 年前

【基于深度学习的脑电图识别】手把手教你使用 1D 卷积和 LSTM 混合模型做 EEG 信号识别

手把手教你使用 1D 卷积和 LSTM 混合模型做 EEG 信号识别1. 数据集1.1 数据集下载:1.2 数据集解释:2. 读取数据:3. 搭建模型:4. 训练模型:5. 展示结果:6. 完整代码:
原创
2203阅读
10评论
10点赞
发布博客于 1 年前

OK,维权失败

发布Blink于 1 年前

被抄袭了,,,大家遇到这个情况是怎么维权的啊,,,

发布Blink于 1 年前
【深度学习机器翻译】GNMT:Google 的的神经机器翻译系统
发布Blink于 1 年前

【深度学习机器翻译】GNMT:Google 的的神经机器翻译系统

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation1. 论文地址:1. 论文地址:https://arxiv.org/abs/1609.08144发表时间:2016被引用量:2345(注意不是百度学术查到的,百度学术非常不准,这个数据是从谷歌学...
原创
714阅读
0评论
1点赞
发布博客于 1 年前

【基于深度学习的脑电图识别】基于 CNN 的脑机接口:EEGNet 用于基于EEG的脑机接口的紧凑型卷积神经网络

EEGNet:用于基于EEG的脑机接口的紧凑型卷积神经网络1. 论文地址:2. 核心思想:3. 数据描述:4. EEGNet 的网络结构:Block1:Block2:预测层:5. 参数量对比:6. 实验结果:1. 论文地址:https://iopscience.iop.org/article/10.1088/1741-2552/aace8c/meta发表时间:2015年被引用量:225输...
原创
2266阅读
0评论
4点赞
发布博客于 1 年前

【基于深度学习的脑电图识别】基于卷积神经网络的脑电图解码及可视化

Deep learning with convolutional neural networks for EEG decoding and visualization1. 论文地址:2. 摘要:3. 网络结构:深层结构:Block 1:Block 2:Block3&4:Classification Layer:浅层结构:4. 数据分布:5. 实验结果:1. 论文地址:https://a...
原创
1860阅读
1评论
5点赞
发布博客于 1 年前

连... 连中三元?

发布Blink于 1 年前

【深度学习语音识别】CNN-LSTM-DNN:CLDNN-卷积,长短时记忆,完全连接的深层神经网络

Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks1. 论文地址:2. 摘要:3. 核心思想:1. 论文地址:Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks发表年份:2015年被引量:6...
原创
3845阅读
3评论
7点赞
发布博客于 1 年前

差两个粉,有没有大佬支持一下呀

发布Blink于 1 年前

【机器学习基础】一文读懂隐马尔可夫模型 HMM

闲言碎语什么是马尔可夫性?一个简单的例子引入隐状态的公式推理简化推理式
原创
273阅读
0评论
2点赞
发布博客于 1 年前
【基于深度学习的脑电图识别】基于大数据和混合深度学习架构的 EEG 自动分析
发布Blink于 1 年前

【基于深度学习的脑电图识别】基于大数据和混合深度学习架构的 EEG 自动分析

Automatic analysis of EEGs using big data and hybrid deep learning architectures1. 摘要:2. 核心:3. 数据集:4. 网络结构:4.1 预处理:特征提取4.2 第一关:使用隐马尔可夫模型进行顺序解码4.3 第二关:基于深度学习的时空上下文分析结构:处理过程:训练:4.4 第三关:统计语言建模5. 实验参数及结果:...
原创
1711阅读
0评论
4点赞
发布博客于 1 年前