导数的定义:
设函数
y=f(x)
在点
x0
处的某个邻域有定义,当自变量
x
在
得,导数定义式:
也可记作 y′|x=x0、dydx|x=x0或df(x)dx .
导数的定义式亦可取下面两种形式:
不同的导数定义式其含义不同:
例:假设
f′(x)
均存在,观察下列极限中A表示什么。
(1)
解:
令 x=x0−Δx ,则 x0=x+Δx ,代入原式中得:
(2)
解:
(3)
解:
令 x=x0−h ,则 x0=x+h ,代入原式中得:
若要证明函数 f(x) 在某一点处连续且可导,则在这一点上有
- 该点的两个单侧导数(左、右导数)存在且相等
- 原函数在该点的左右极限存在且相等
例:设函数
为了使函数 f(x) 在 x=1 处连续且可导, a,b 应取什么值?
解:
令
f′−(x)=f′+(x)
,得:
2x=ax⇒a=2
又
x2=ax+b
,得:
1=2+b⇒b=−1