导数的定义

导数的定义:
设函数 y=f(x) 在点 x0 处的某个邻域有定义,当自变量 x x0处取得增量 Δx (点 x0+Δx 仍在该邻域内)时,相应地,因变量取得增量 Δy=f(x0+Δx)f(x0) ;当在 Δx0 时,如果 Δy Δx 之比的极限存在,那么称函数 y=f(x) 在点 x0 可导,并称这个极限为函数 y=f(x) 在点 x0 处的导数,记为 f(x)
得,导数定义式

f(x0)=limΔx0ΔyΔx=limΔx0f(x0+Δx)f(x0)Δx

也可记作 y|x=x0dydx|x=x0df(x)dx .

导数的定义式亦可取下面两种形式:

f(x0)=limh0f(x0+h)f(x0)h

f(x0)=limh0f(x)f(x0)xx0

不同的导数定义式其含义不同:
例:假设 f(x) 均存在,观察下列极限中A表示什么。
(1)

A=limx0f(x0Δx)f(x0)Δx

解:
x=x0Δx ,则 x0=x+Δx ,代入原式中得:
A=limx0f(x)f(x+Δx)Δx=limx0f(x+Δx)f(x)Δx=f(x)=f(x0Δx)=f(x0)

(2)

A=limx0f(x)x,f(0)=0,f(0)

解:
A=limx0f(x)f(0)x0=f(0)

(3)

A=limh0f(x0+h)f(x0h)h

解:
x=x0h ,则 x0=x+h ,代入原式中得:
A=2lim2h0f(x+2h)f(x)2h=2f(x)=2f(x0h)=2f(x0)

若要证明函数 f(x) 在某一点处连续且可导,则在这一点上有

  • 该点的两个单侧导数(左、右导数)存在且相等
  • 原函数在该点的左右极限存在且相等

例:设函数

f(n)={x2,ax+b,x <= 1x>1

为了使函数 f(x) x=1 处连续且可导, a,b 应取什么值?

解:
f(x)=f+(x) ,得: 2x=axa=2
x2=ax+b ,得: 1=2+bb=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值