高等数学——导数的定义和常见导数

本文探讨了导数在高等数学中的重要性,通过函数切线的模型解释导数的定义,讨论了函数在某点可导的条件及不可导的情况,并列举了一些常见函数的导数。导数不仅是微积分的基础,也是解决实际问题的关键工具。
摘要由CSDN通过智能技术生成

本文始发于个人公众号:TechFlow


导数是微积分也是高数当中很重要的一个部分,不过很遗憾的是,和导数相关的部分很多同学都是高中的时候学的。经过了这么多年,可能都差不多还给老师了。所以今天的文章就一起来温习一下导数的相关知识,捡一捡之前忘记的内容。


函数切线


关于导数,最经典的解释可能就是切线模型了。以前高中的时候,经常对二次函数求切线,后来学了微积分之后明白了,所谓的求切线其实就是求导。


比如当下, 我们有一个光滑的函数曲线 y = f ( x ) y=f(x) y=f(x),我们想要求出这个曲线在某个点 M M M的切线,那么应该怎么操作呢?

如上图所示,我们可以在选择另外一个点N,然后做MN的割线。假设T是M的真实的切线,当我们将N向M无限逼近的时候, ∠ N M T \angle NMT NMT在无限缩小,直到趋近与0,而此时的割线MN也就无限逼近于M点真实的切线T。


在图中,MN的斜率表示为 tan ⁡ ϕ \tan\phi tanϕ,其中 tan ⁡ ϕ = f ( x ) − f ( x 0 ) x − x 0 \tan\phi=\frac{f(x)-f(x_0)}{x - x_0} tanϕ=xx0f(x)f(x0).


当N逼近于M时:


tan ⁡ ϕ = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \displaystyle\tan\phi= \lim_{x \to x_0}\frac{f(x) - f(x_0)}{x - x_0} tanϕ=xx0limxx0f(x)f(x0)


我们令 Δ x = x − x 0 \Delta x = x - x_0 Δx=xx0,所以:


tan ⁡ ϕ = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \displaystyle\tan\phi=\lim_{\Delta x \to 0}\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} tanϕ=Δx0limΔxf(x0+Δx)f(x0)


此时 tan ⁡ ϕ \tan\phi tanϕ的结果就是函数在 x 0 x_0 x0处导数的值,上面这个方法大家应该也都不陌生,在物理课上就经常见到,只不过在物理当中不叫极限也不叫逼近,称为换元法。但不管叫什么,意思是一样的。我们理解了上面这些式子之后,再来看看导数真正的定义。


定义


假设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的邻域内有定义,当自变量 x x x x 0 x_0 x0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值