曲线的凹凸性与拐点

一个函数在上升或下降的过程中,常常会有一个弯曲方向的问题,例如:虽然同为上升函数,但弯曲方向的不同使它们看起来有显著的区别
这里写图片描述

下面给出曲线凹凸性的定义:
f(x) 在区间 I 上连续,如果对I上任意两点 x1,x2 恒有

f(x1+x22)<f(x1)+f(x2)2
那么称 f(x) I 上的图形是(向上)凹的(或凹弧);
如果恒有
f(x1+x22)>f(x1)+f(x2)2
那么称 f(x) I 上的图形是(向上)凸的(或凸弧).
这里写图片描述

如果函数f(x) I 内具有二阶导数,那么可以利用二阶导数的正负来判定曲线的凹凸性,由此可以推导出曲线凹凸性的判定定理:
f(x) [a,b] 上连续,在 (a,b) 内具有一阶和二阶导数,那么
(1)若在 (a,b) f′′(x)>0 ,则 f(x) [a,b] 上的图形是凹的;
(2)若在 (a,b) f′′(x)<0 ,则 f(x) [a,b] 上的图形是凸的

拐点的定义:
y=f(x) 在区间 I 上连续,x0 I 内的点.如果曲线y=f(x)在经过点 (x0,f(x0)) 时,曲线的凹凸性(函数二阶导的符号)改变了,那么就称点 (x0,f(x0)) 为这曲线的拐点(反曲点).

需要明确的是:拐点是曲线上的一点,它有横坐标和纵坐标,不要只把横坐标当成拐点.

要寻找拐点,只要找出 f′′(x) 符号发生变化的分界点即可,也就是找出 f(x) 单调增减区间发生变化的分界点即可.因此,如果 f(x) 在区间(a, b)内具有二阶导,那么在这样的分界点处必有 f′′(x)=0 ;除此之外, f(x) 的二阶导数不存在的点,也可能是 f′′(x) 的符号发生变化的分界点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值