一个函数在上升或下降的过程中,常常会有一个弯曲方向的问题,例如:虽然同为上升函数,但弯曲方向的不同使它们看起来有显著的区别
下面给出曲线凹凸性的定义:
设
f(x)
在区间
I
上连续,如果对
如果恒有
如果函数
设
(1)若在
(a,b)
内
f′′(x)>0
,则
f(x)
在
[a,b]
上的图形是凹的;
(2)若在
(a,b)
内
f′′(x)<0
,则
f(x)
在
[a,b]
上的图形是凸的
拐点的定义:
设
y=f(x)
在区间
I
上连续,
需要明确的是:拐点是曲线上的一点,它有横坐标和纵坐标,不要只把横坐标当成拐点.
要寻找拐点,只要找出 f′′(x) 符号发生变化的分界点即可,也就是找出 f′(x) 单调增减区间发生变化的分界点即可.因此,如果 f(x) 在区间(a, b)内具有二阶导,那么在这样的分界点处必有 f′′(x)=0 ;除此之外, f(x) 的二阶导数不存在的点,也可能是 f′′(x) 的符号发生变化的分界点。