集合论—等价关系与偏序关系

等价关系

等价关系的定义

定义:设 R R R为非空集合 A A A上的关系,若 R R R是自反的、对称的和传递的,则称 R R R A A A上的等价关系。对任何 x , y ∈ A x,y\in A x,yA,若 &lt; x , y &gt; ∈ R &lt;x,y&gt;\in R <x,y>R,则记作 x ∼ y x\sim y xy

例:

  1. 若有 A = { 1 , 2 , . . . , 8 } A=\{1,2,...,8\} A={1,2,...,8} R = { &lt; x , y &gt; ∣ x , y ∈ A ∧ x ≡ y ( m o d 3 ) } R=\{&lt;x,y&gt;|x,y\in A\land x\equiv y\pmod 3\} R={<x,y>x,yAxy(mod3)}。则 R R R A A A上的等价关系。
  2. 动物按种属进行分类后,“具有相同种属”的关系是动物集合上的等价关系。
  3. 集合上的恒等关系和全域关系都是等价关系。
等价类

R R R是非空集合 A A A上的等价关系,则 A A A上互相等价的元素构成了 A A A的若干个子集,称作等价类。

等价类的一般定义:设 R R R是非空集合 A A A上的等价关系,对任意的 x ∈ A x\in A xA,令 [ x ] R = { y ∣ y ∈ A , x R y } [x]_R=\{y|y\in A, x\text{R}y\} [x]R={yyA,xRy}则称 [ x ] R [x]_R [x]R x x x关于 R R R的等价类,简称 x x x的等价类,简记为 [ x ] [x] [x]

例如:若有 A = { 1 , 2 , . . . , 8 } A=\{1,2,...,8\} A={1,2,...,8} R = { &lt; x , y &gt; ∣ x , y ∈ A ∧ x ≡ y ( m o d 3 ) } R=\{&lt;x,y&gt;|x,y\in A\land x\equiv y\pmod 3\} R={<x,y>x,yAxy(mod3)},有等价类: [ 1 ] = [ 4 ] = [ 7 ] = { 1 , 4 , 7 } [1]=[4]=[7]=\{1,4,7\} [1]=[4]=[7]={1,4,7} [ 2 ] = [ 5 ] = [ 8 ] = { 2 , 5 , 8 } [2]=[5]=[8]=\{2,5,8\} [2]=[5]=[8]={2,5,8} [ 3 ] = [ 6 ] = { 3 , 6 } [3]=[6]=\{3,6\} [3]=[6]={3,6}等价类具有如下性质:
R R R是非空集合 A A A上的等价关系,对任意的 x , y ∈ A x,y\in A x,yA,下面的结论成立。

  1. [ x ] ≠ ∅ [x]\neq\varnothing [x]̸=,且 [ x ] ⊆ A [x]\subseteq A [x]A
  2. x R y x\text{R}y xRy,则 [ x ] = [ y ] [x]=[y] [x]=[y]
  3. x ̸ R y x\not \text{R}y x̸Ry,则 [ x ] ∩ [ y ] = ∅ [x]\cap[y]=\varnothing [x][y]=
  4. ⋃ x ∈ A [ x ] = A \bigcup_{x\in A}[x]=A xA[x]=A.

其中,(1)表明任何等价类都是集合 A A A的非空子集;(2)和(3)表明在 A A A中任取两个元素,它们的等价类或是相等,或是不交;(4)表示所有等价类的并集就是 A A A.

商集

定义:设 R R R是非空集合 A A A上的等价关系,以 R R R的不交等价类为元素的集合称作 A A A R R R下的商集,记作 A / R A/R A/R A / R = { [ x ] R   ∣   x ∈ A } A/R=\{[x]_R\ |\ x\in A\} A/R={[x]R  xA}例如:
1、若有 A = { 1 , 2 , . . . , 8 } A=\{1,2,...,8\} A={1,2,...,8} R = { &lt; x , y &gt; ∣ x , y ∈ A ∧ x ≡ y ( m o d 3 ) } R=\{&lt;x,y&gt;|x,y\in A\land x\equiv y\pmod 3\} R={<x,y>x,yAxy(mod3)},有商集: A / R = { { 1 , 4 , 7 } , { 2 , 5 , 8 } , { 3 , 6 } } A/R=\{\{1,4,7\},\{2,5,8\},\{3,6\}\} A/R={{1,4,7},{2,5,8},{3,6}}

2、非空集合 A A A上的全域关系 E A E_A EA A A A上的等价关系,对任意 x ∈ A x\in A xA [ x ] = A [x]=A [x]=A,商集 A / E A = { A } A/E_A = \{A\} A/EA={A}

划分与划分块

A A A是非空集合,若存在一个 A A A的子集族 π ( π ⊆ P ( A ) ) \pi(\pi \subseteq P(A)) π(πP(A))满足以下条件:

  1. ∅ ∉ π \varnothing \notin \pi /π
  2. π \pi π中任意两个元素不交
  3. π \pi π中所有元素的并集等于 A A A,则称 π \pi π A A A的一个划分,且称 π \pi π中的元素为划分块

例:考虑集合 A = { a , b , c , d } A=\{a,b,c,d\} A={a,b,c,d},则:

  1. { { a } , { b , c } , { d } } \{\{a\}, \{b,c\},\{d\}\} {{a},{b,c},{d}}
  2. { { a , b , c , d } } \{\{a,b,c,d\}\} {{a,b,c,d}}
  3. { { a , b } , { c } , { a , d } } \{\{a,b\}, \{c\},\{a,d\}\} {{a,b},{c},{a,d}}
  4. { ∅ , { a , b } , { c , d } } \{\varnothing, \{a,b\}, \{c,d\}\} {,{a,b},{c,d}}
  5. { { a } , { b , c } } \{\{a\},\{b,c\}\} {{a},{b,c}}

中(1)、(2)是 A A A的划分;(3)不是 A A A的划分,因为子集 { a , b } \{a,b\} {a,b} { a , d } \{a,d\} {a,d}有交;(4)不是 A A A的划分,因为 ∅ \varnothing 在其中;(5)不是 A A A的划分,因为所有子集的并集不为 A A A.

由商集和划分的定义不难看出若有 A A A上的二元关系 R = { &lt; x , y &gt;   ∣   x , y ∈ π } R=\{&lt;x,y&gt;\ |\ x,y \in\pi\} R={<x,y>  x,yπ},则可证明 R R R A A A上的等价关系,称为有划分 π \pi π所诱导的等价关系,且该等价关系的商集为 π \pi π。所以集合 A A A上的等价关系与集合 A A A的划分是一一对应的。

偏序关系

在介绍偏序关系之前先了解一下什么是全序关系:
全序集的定义: &lt; A , ≼ &gt; &lt;A,\preccurlyeq&gt; <A,>为偏序集,若对任意的 x , y ∈ A x,y\in A x,yA x x x y y y都可比,则称 ≼ \preccurlyeq A A A上的全序关系,且称 &lt; A , ≼ &gt; &lt;A,\preccurlyeq&gt; <A,>为全序集。

例如: { 1 , 2 , 3 , 4 , 5 } \{1,2,3,4,5\} {1,2,3,4,5}上的 ⩽ \leqslant 关系就是全序关系,而整除关系就不是全序关系。

偏序关系的定义

R R R为非空集合 A A A上的关系,若 R R R是自反的、反对称的、传递的,则称 R R R A A A上的偏序关系。简称偏序,记作 ≼ \preccurlyeq

≼ \preccurlyeq A A A上的偏序关系,若有有序对 &lt; x , y &gt; &lt;x,y&gt; <x,y>属于偏序 ≼ \preccurlyeq ,可记作 x ≼ y x\preccurlyeq y xy,读作 x x x小于等于 y y y,不过这里的“小于等于”不是指数的大小,而是指它们在偏序中的位置先后。

例如在集合 A = { 1 , 2 , 3 } A=\{1,2,3\} A={1,2,3}中,偏序 ≼ \preccurlyeq A A A上的大于等于关系,则: ≼ = { &lt; 3 , 3 &gt; , &lt; 3 , 2 &gt; , &lt; 3 , 1 &gt; , &lt; 2 , 2 &gt; , &lt; 2 , 1 &gt; &lt; 1 , 1 &gt; } \preccurlyeq = \{&lt;3,3&gt;,&lt;3,2&gt;,&lt;3,1&gt;,&lt;2,2&gt;,&lt;2,1&gt;&lt;1,1&gt;\} ={<3,3>,<3,2>,<3,1>,<2,2>,<2,1><1,1>}那么就有 3 ≼ 2 3\preccurlyeq 2 32 3 ≼ 1 3\preccurlyeq 1 31等,它们分别表示 &lt; 3 , 2 &gt; ∈ ≼ &lt;3,2&gt;\in\preccurlyeq <3,2> &lt; 3 , 1 &gt; ∈ ≼ &lt;3,1&gt;\in\preccurlyeq <3,1>

偏序集

偏序集定义:一个集合 A A A A A A上的偏序关系 R R R一起称作偏序集,记作 &lt; A , R &gt; &lt;A,R&gt; <A,R>

可比与盖住:
&lt; A , ≼ &gt; &lt;A,\preccurlyeq&gt; <A,>为偏序集,对于任意的 x , y ∈ A x,y\in A x,yA,若果 x ≼ y x\preccurlyeq y xy y ≼ x y\preccurlyeq x yx成立,则称 x x x y y y是可比的,若 x ≺ y x\prec y xy(即 x ≼ y ∧ x ≠ y x\preccurlyeq y \land x\neq y xyx̸=y),且不存在 z ∈ A z\in A zA使得 x ≺ z ≺ y x\prec z\prec y xzy,则称 y y y盖住 x x x

例如: &lt; A , ≼ &gt; &lt;A,\preccurlyeq &gt; <A,>是偏序集,其中 A = { 1 , 2 , 3 , 4 , 5 } A=\{1,2,3,4,5\} A={1,2,3,4,5} ≼ \preccurlyeq 是整除关系。

那么对任意 x ∈ A x\in A xA都有 1 ≼ x 1\preccurlyeq x 1x,所以1和1,2,3,4,5都是可比的;但是2与3相互不能整除,所以2和3是不可比的:。

对于1和2来说, 1 ≺ 2 1\prec 2 12,并且不存在 z ∈ A z\in A zA使得1整除 z z z并且 z z z整除2,所以2盖住1,同样的有4盖住2,但4不盖住1因为有 1 ≺ 2 ≺ 4 1\prec 2\prec 4 124

显然的,若 x x x y y y不可比,则一定不会有 x x x盖住 y y y或反之。

哈斯图

对于又穷的偏序集 &lt; A , ≼ &gt; &lt;A,\preccurlyeq&gt; <A,>可以用哈斯图来描述。在哈斯图中,每一个节点表示 A A A中的一个元素,节点位置按它们在偏序集中的次序从低向上排列。若 y y y盖住 x x x则在 x y xy xy之间连一条直线。

例如: &lt; A , ≼ &gt; &lt;A,\preccurlyeq &gt; <A,>是偏序集,其中 A = { 1 , 2 , 3 , 4 , 5 } A=\{1,2,3,4,5\} A={1,2,3,4,5} ≼ \preccurlyeq 是整除关系,则该偏序集的哈斯图为:
hast
由哈斯图不能看出全序集的哈斯图是一条直线,因此,全序集也称做线序集

元与界

&lt; A , ≼ &gt; &lt;A,\preccurlyeq&gt; <A,>为偏序集, B ⊆ A B\subseteq A BA

  1. ∃ y ∈ B \exists y\in B yB,使得 ∀ x ( x ∈ B → y ≼ x ) \forall x(x\in B\to y\preccurlyeq x) x(xByx)成立,则称 y y y B B B的最小元。
  2. ∃ y ∈ B \exists y\in B yB,使得 ∀ x ( x ∈ B → x ≼ y ) \forall x(x\in B\to x\preccurlyeq y) x(xBxy)成立,则称 y y y B B B的最大元。
  3. ∃ y ∈ B \exists y\in B yB,使得 ¬ ∃ x ( x ∈ B ∧ x ≺ y ) \lnot\exist x(x\in B\land x\prec y) ¬x(xBxy)成立,则称 y y y B B B的极小元。
  4. ∃ y ∈ B \exists y\in B yB,使得 ¬ ∃ x ( x ∈ B ∧ y ≺ x ) \lnot\exist x(x\in B\land y\prec x) ¬x(xByx)成立,则称 y y y B B B的极大元。

&lt; A , ≼ &gt; &lt;A,\preccurlyeq&gt; <A,>为偏序集, B ⊆ A B\subseteq A BA

  1. ∃ y ∈ A \exist y\in A yA,使得 ∀ x ( x ∈ B → x ≼ y ) \forall x(x\in B\to x\preccurlyeq y) x(xBxy)成立,则称 y y y B B B的上界。
  2. ∃ y ∈ A \exist y\in A yA,使得 ∀ x ( x ∈ B → y ≼ x ) \forall x(x\in B\to y\preccurlyeq x) x(xByx)成立,则称 y y y B B B的下界。
  3. C = { y   ∣   ∀ x ( x ∈ B → x ≼ y ) } C=\{y\ |\ \forall x(x\in B\to x\preccurlyeq y)\} C={y  x(xBxy)},则称 C C C的最小元为 B B B的上确界(最小上界)
  4. C = { y   ∣   ∀ x ( x ∈ B → y ≼ x ) } C=\{y\ |\ \forall x(x\in B\to y\preccurlyeq x)\} C={y  x(xByx)},则称 C C C的最大元为 B B B的下确界(最大下界)
  • 22
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值