等价关系 & 偏序关系 & 全序关系

本文详细解释了等价关系、偏序关系及全序关系的概念及其特性。等价关系具备自反性、对称性和传递性;偏序关系拥有自反性、反对称性和传递性;全序关系则进一步要求集合中的任意两个元素都可比较。文中还提供了丰富的实例帮助理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

等价

R R R 是某个集合 X X X 上的一个二元关系。若 R R R 满足以下条件:

  • 自反性 ∀ x ∈ X ,   x R x \forall x \in X,\ xRx xX, xRx
  • 对称性 ∀ x , y ∈ X ,   x R y ⇒ y R x \forall x,y \in X,\ xRy \Rightarrow yRx x,yX, xRyyRx
  • 传递性 ∀ x , y , z ∈ X ,   ( x R y   ∧   y R z )   ⇒   x R z \forall x,y,z \in X,\ (xRy\ \wedge\ yRz)\ \Rightarrow\ xRz x,y,zX, (xRy  yRz)  xRz

则称 R R R 是一个定义在 X X X 上的等价关系。

例如:

  • 平面几何中的三角形间的相似关系、全等关系都是等价关系;
  • 平面几何中的平行关系是等价关系;

又例如:

X = { 1 , 4 , 7 } X=\{1,4,7\} X={1,4,7},定义 X X X 上的关系 R R R R = { ( a , b ) ∣ a , b ∈ A ∧ a ≡ b   m o d   3 } R=\{(a,b)|a,b\in A \wedge a \equiv b\ mod\ 3\} R={(a,b)a,bAab mod 3},其中 a ≡ b   m o d   3 a \equiv b\ mod\ 3 ab mod 3 表示 a a a b b b 模 3 同余,即 a a a 除以 3 的余数和 b b b 除以 3 的余数相等。不难验证 R R R X X X 上的等价关系。

偏序

R R R 是某个集合 X X X 上的一个二元关系。若 R R R 满足以下条件:

  • 自反性 ∀ x ∈ X ,   x R x \forall x \in X,\ xRx xX, xRx
  • 反对称性 ∀ x , y ∈ X \forall x,y \in X x,yX,若   x R y \ xRy  xRy y R x yRx yRx,则 x = y x = y x=y
  • 传递性 ∀ x , y , z ∈ X ,   ( x R y   ∧   y R z )   ⇒   x R z \forall x,y,z \in X,\ (xRy\ \wedge\ yRz)\ \Rightarrow\ xRz x,y,zX, (xRy  yRz)  xRz

则称 R R R 是一个定义在 X X X 上的偏序关系。

举例:

  • 实数集上的小于等于关系是一个偏序关系;
  • S S S 是集合, P ( S ) P(S) P(S) S S S 的所有子集构成的集合,定义 P ( S ) P(S) P(S) 中两个元素 A ≤ B A≤B AB 当且仅当 A A A B B B 的子集,即 A A A 包含于 B B B,则 P ( S ) P(S) P(S) 在这个关系下成为偏序集;
  • N N N 是正整数集,定义 m ≤ n m≤n mn 当且仅当 m m m 能整除 n n n,不难验证这是一个偏序关系;

如果要进一步划分,上面定义表示的是非严格偏序(自反偏序, ≤ \leq ,更严格一种的偏序关系叫做严格偏序(反自反偏序),设 < < < 是某个集合 X X X 上的一个二元关系。若 < < < 满足以下条件:

  • 反自反性: ∀ x ∈ X ,   x ≮ x \forall x \in X,\ x \nless x xX, xx
  • 非对称性: ∀ x , y ∈ X ,   x < y   ⇒   y ≮ x \forall x,y \in X,\ x<y\ \Rightarrow\ y \nless x x,yX, x<y  yx
  • 传递性: ∀ x , y , z ∈ X ,   ( x R y   ∧   y R z )   ⇒   x R z \forall x,y,z \in X,\ (xRy\ \wedge\ yRz)\ \Rightarrow\ xRz x,y,zX, (xRy  yRz)  xRz

严格偏序与有向无环图( D A G DAG DAG)有直接的对应关系。一个集合上的严格偏序的关系图就是一个有向无环图。

全序

R R R 是集合 X X X 上的偏序关系,如果对于每个 x , y ∈ X x,y \in X x,yX,必有 x R y xRy xRy y R x yRx yRx,则称 R R R 是集合 X X X 上的全序关系。

一般的说偏序集合的两个元素 x x x y y y 可以处于四个相互排斥的关联中任何一个:要么 x < y x<y x<y,要么 x = y x=y x=y,要么 x > y x>y x>y,要么 x x x y y y 是“不可比较”的(三个都不是)。全序集合是用规则排除第四种可能的集合:所有元素对都是可比较的,并且声称三分法成立。

直观上,偏序指集合上只有部分元素之间可比较,而全序是指全体元素均可比较。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值