等价
设 R R R 是某个集合 X X X 上的一个二元关系。若 R R R 满足以下条件:
- 自反性: ∀ x ∈ X , x R x \forall x \in X,\ xRx ∀x∈X, xRx
- 对称性: ∀ x , y ∈ X , x R y ⇒ y R x \forall x,y \in X,\ xRy \Rightarrow yRx ∀x,y∈X, xRy⇒yRx
- 传递性: ∀ x , y , z ∈ X , ( x R y ∧ y R z ) ⇒ x R z \forall x,y,z \in X,\ (xRy\ \wedge\ yRz)\ \Rightarrow\ xRz ∀x,y,z∈X, (xRy ∧ yRz) ⇒ xRz
则称 R R R 是一个定义在 X X X 上的等价关系。
例如:
- 平面几何中的三角形间的相似关系、全等关系都是等价关系;
- 平面几何中的平行关系是等价关系;
又例如:
设 X = { 1 , 4 , 7 } X=\{1,4,7\} X={1,4,7},定义 X X X 上的关系 R R R, R = { ( a , b ) ∣ a , b ∈ A ∧ a ≡ b m o d 3 } R=\{(a,b)|a,b\in A \wedge a \equiv b\ mod\ 3\} R={(a,b)∣a,b∈A∧a≡b mod 3},其中 a ≡ b m o d 3 a \equiv b\ mod\ 3 a≡b mod 3 表示 a a a 与 b b b 模 3 同余,即 a a a 除以 3 的余数和 b b b 除以 3 的余数相等。不难验证 R R R 是 X X X 上的等价关系。
偏序
设 R R R 是某个集合 X X X 上的一个二元关系。若 R R R 满足以下条件:
- 自反性: ∀ x ∈ X , x R x \forall x \in X,\ xRx ∀x∈X, xRx
- 反对称性: ∀ x , y ∈ X \forall x,y \in X ∀x,y∈X,若 x R y \ xRy xRy 且 y R x yRx yRx,则 x = y x = y x=y
- 传递性: ∀ x , y , z ∈ X , ( x R y ∧ y R z ) ⇒ x R z \forall x,y,z \in X,\ (xRy\ \wedge\ yRz)\ \Rightarrow\ xRz ∀x,y,z∈X, (xRy ∧ yRz) ⇒ xRz
则称 R R R 是一个定义在 X X X 上的偏序关系。
举例:
- 实数集上的小于等于关系是一个偏序关系;
- 设 S S S 是集合, P ( S ) P(S) P(S)是 S S S 的所有子集构成的集合,定义 P ( S ) P(S) P(S) 中两个元素 A ≤ B A≤B A≤B 当且仅当 A A A 是 B B B 的子集,即 A A A 包含于 B B B,则 P ( S ) P(S) P(S) 在这个关系下成为偏序集;
- 设 N N N 是正整数集,定义 m ≤ n m≤n m≤n 当且仅当 m m m 能整除 n n n,不难验证这是一个偏序关系;
如果要进一步划分,上面定义表示的是非严格偏序(自反偏序, ≤ \leq ≤),更严格一种的偏序关系叫做严格偏序(反自反偏序),设 < < < 是某个集合 X X X 上的一个二元关系。若 < < < 满足以下条件:
- 反自反性: ∀ x ∈ X , x ≮ x \forall x \in X,\ x \nless x ∀x∈X, x≮x
- 非对称性: ∀ x , y ∈ X , x < y ⇒ y ≮ x \forall x,y \in X,\ x<y\ \Rightarrow\ y \nless x ∀x,y∈X, x<y ⇒ y≮x
- 传递性: ∀ x , y , z ∈ X , ( x R y ∧ y R z ) ⇒ x R z \forall x,y,z \in X,\ (xRy\ \wedge\ yRz)\ \Rightarrow\ xRz ∀x,y,z∈X, (xRy ∧ yRz) ⇒ xRz
严格偏序与有向无环图( D A G DAG DAG)有直接的对应关系。一个集合上的严格偏序的关系图就是一个有向无环图。
全序
设 R R R 是集合 X X X 上的偏序关系,如果对于每个 x , y ∈ X x,y \in X x,y∈X,必有 x R y xRy xRy 或 y R x yRx yRx,则称 R R R 是集合 X X X 上的全序关系。
一般的说偏序集合的两个元素 x x x 和 y y y 可以处于四个相互排斥的关联中任何一个:要么 x < y x<y x<y,要么 x = y x=y x=y,要么 x > y x>y x>y,要么 x x x 和 y y y 是“不可比较”的(三个都不是)。全序集合是用规则排除第四种可能的集合:所有元素对都是可比较的,并且声称三分法成立。
直观上,偏序指集合上只有部分元素之间可比较,而全序是指全体元素均可比较。