希尔排序是对插入排序的改进版本,插入排序是建立在相邻元素(索引相距为1)的交换上,希尔排序是建立在索引公差为 A i A_i Ai(称为增量序列)的一系列元素的排序上( A i A_i Ai表示第 i i i趟遍历时索引间隔数);这样就减少了比较的次数,在宏观上使一趟遍历后更加有序。
对一无序数组,以 l e n g h t / 2 lenght / 2 lenght/2为索引间隔,这样数组便分成了 l e n g h t / 2 lenght / 2 lenght/2组(0和 l e n g h t / 2 lenght / 2 lenght/2,1和 l e n g h t / 2 + 1 lenght / 2+1 lenght/2+1等等),然后对这每组的两个元素进行排序。排序后再对整个数组以 l e n g h t / 4 lenght / 4 lenght/4分组,这样每组会有四个元素,对每组的这四个元素排序即可。重复这个过程,直到 A i = 1 A_i = 1 Ai=1,这时组数为1,再排序一次即排序完毕。
希尔建议以
A
0
=
l
e
n
g
h
t
/
2
A
i
+
1
=
A
i
/
2
A_0 = lenght / 2\\ A_{i+1} = A_i / 2
A0=lenght/2Ai+1=Ai/2
作为增量序列,这也是目前推荐使用的增量序列。此序列成为希尔增量序列。现在数学已经证明希尔增量序列不是最优的,但最优序列目前还没有找到1。
增量序列
- Hibbard提出了另一个增量序列{ 1 , 3 , 7 , . . . , 2 k − 1 {1,3,7,...,2^k-1} 1,3,7,...,2k−1},这种序列的时间复杂度(最坏情形)为 O ( n 1.5 ) O(n^{1.5}) O(n1.5) 2
- Sedgewick提出了几种增量序列,其最坏情形运行时间为 O ( n 1.3 ) O(n^{1.3}) O(n1.3),其中最好的一个序列是{ 1 , 5 , 19 , 41 , 109 , . . . {1,5,19,41,109,...} 1,5,19,41,109,...}。2
性质
- 不稳定排序