(转) 基于MapReduce的ItemBase推荐算法的共现矩阵实现(一)

本文介绍了基于MapReduce的ItemBase推荐算法实现,通过共现矩阵计算用户推荐项。首先,算法原理包括用户和物品的协同过滤,接着详细描述了数据建模,特别是共现矩阵方式的步骤。接着展示了使用MapReduce的六个作业步骤来完成推荐列表生成。最后,文章总结了MapReduce在推荐算法中的应用。
摘要由CSDN通过智能技术生成

转自:http://zengzhaozheng.blog.51cto.com/8219051/1557054

一、概述

这2个月为公司数据挖掘系统做一些根据用户标签情况对用户的相似度进行评估,其中涉及一些推荐算法知识,在这段时间研究了一遍《推荐算法实践》和《Mahout in action》,在这里主要是根据这两本书的一些思想和自己的一些理解对分布式基于ItemBase的推荐算法进行实现。其中分两部分,第一部分是根据共现矩阵的方式来简单的推算出用户的推荐项,第二部分则是通过传统的相似度矩阵的方法来实践ItemBase推荐算法。这篇blog主要记录第一部分的内容,并且利用MapReduce进行实现,下一篇blog则是记录第二部分的内容和实现。

二、算法原理

协同推荐算法,作为众多推荐算法中的一种已经被广泛的应用。其主要分为2种,第一种就是基于用户的协同过滤,第二种就是基于物品的协同过滤。

所谓的itemBase推荐算法简单直白的描述就是:用户A喜欢物品X1,用户B喜欢物品X2,如果X1和X2相似则,将A之前喜欢过的物品推荐给B,或者B之前喜欢过的物品推荐给A。这种算法是完全依赖于用户的历史喜欢物品的;所谓的UserBase推荐算法直白地说就是:用户A喜欢物品X1,用户B喜欢物品X2,如果用户A和用户B相似则将物品X1推荐给用户B,将物品X2推荐给用户A。简单的示意图:

wKioL1Qe6-7gZbvgAAF26e9WFgA063.jpgwKiom1Qe62Ox5ZhrAADsaRMZB0s347.jpg

至于选择哪种要看自己的实际情况,如果用户量比物品种类多得多那么就采用ItemBase的协同过滤推荐算法,如果是用户量比物品种类少的多则采用UserBase的协同顾虑推荐算,这样选择的一个原因是为了让物品的相似度矩阵或者用户相似度矩阵或者共现矩阵的规模最小化。

三、数据建模

基本的算法上面已经大概说了一下,对于算法来说,对数据建模使之运用在算法之上是重点也是难点。这小节主要根据自己相关项目的经验和《推荐引擎实践》的一些观点来讨论一些。分开2部分说,一是根据共现矩阵推荐、而是根据相似度算法进行推荐。

(1)共现矩阵方式:

第一步:转换成用户向量

1[102:0.1,103:0.2,104:0.3]:表示用户1喜欢的物品列表,以及他们对应的喜好评分。

2[101:0.1,102:0.7,105:0.9]:表示用户2喜欢的物品列表,以及他们对应的喜好评分。

3[102:0.1,103:0.7,104:0.2]:表示用户3喜欢的物品列表,以及他们对应的喜好评分。

第二步:计算共现矩阵

简单地说就是将同时喜欢物品x1和x2的用户数组成矩阵。

wKiom1QfAT_xHw_EAAD7ZBEpZ4E049.jpg

第三步:

生成用户对物品的评分矩阵

wKiom1QfA5_xQYhxAAB86TsiCxE249.jpg

第四步:物品共现矩阵和用户对物品的评分矩阵相乘得到推荐结果

wKiom1QfDkfDDcVWAAFPZSfTYP4878.jpg

举个例子计算用户1的推荐列表过程:

用户1对物品101的总评分计算:

1*0+1*0.1+0*0.2+0*0.3+1*0=0.1

用户1对物品102的总评分计算:

1*0+3*0.1+1*0.2+2*0.3+2*0=1.1

用户1对物品103的总评分计算:

0*0+1*0.1+1*0.2+1*0.3+0*0=0.6

用户1对物品104的总评分计算:

0*0+2*0.1+1*0.2+2*0.3+1*0=1.0

用户1对物品105的总评分计算:

1*0+2*0.1+0*0.2+1*0.3+2*0=0.5

从而得到用户1的推荐列表为1[101:0.1,102:1.1,103:0.6,104:1.0,105:0.5]再经过排序得到最终推荐列表1[102:1.1,104:1.0,103:0.6,105:0.5,101:0.1]。

(2)通过计算机物品相似度方式计算用户的推荐向量。

通过计算机物品相似度方式计算用户的推荐向量和上面通过共现矩阵的方式差不多,就是将物品相似度矩阵代替掉共现矩阵和用户对物品的评分矩阵相乘,然后在计算推荐向量。

计算相似度矩阵:

在计算之前我们先了解一下物品相似度相关的计算方法。

对于计算物品相似度的算法有很多,要根据自己的数据模型进行选择。基于皮尔逊相关系数计算、欧几里德定理(实际上是算两点距离)、基于余弦相似度计算斯皮尔曼相关系数计算、基于谷本系数计算、基于对数似然比计算。其中谷本系数和对数似然比这两种方式主要是针对那些没有指名对物品喜欢度的数据模型进行相似度计算,也就是mahout中所指的Boolean数据模型。下面主要介绍2种,欧几里德和余弦相似度算法。

wKioL1Qfw8GgP-nIAAIircdsK3M870.jpg现在关键是怎么将现有数据转化成对应的空间向量模型使之适用这些定理,这是个关键点。下面我以欧几里德定理作为例子看看那如何建立模型:

第一步:将用户向量转化为物品向量

用户向量:

1[102:0.1,103:0.2,104:0.3]

2[101:0.1,102:0.7,105:0.9]

3[102:0.1,103:0.7,104:0.2]

转为为物品向量:

101[2:0.1]

102[1:0.1,2:0.7,3:0.1]

103[1:0.2,3:0.7]

104[1:0.3,3:0.2]

105[2:0.9]

第二步:

那么物品相似度计算为:

wKiom1Qf0FyAsRypAAJKQFVRufY677.jpg

第三步:

最终得到物品相似度矩阵为:(这里省略掉没有意义的自关联相似度)

wKiom1Qf1svzxfXzAAEMhjBgreE838.jpg

第四步:物品相似度矩阵和用户对物品的评分矩阵相乘得到推荐结果:

wKioL1Qf3dqiMzOKAAF8WAjWLEo861.jpg

举个例子计算用户1的类似推荐列表过程:

用户1对物品101的总评分计算:

1*0+1*0.6186429+0*0.6964322+0*0.7277142+1*0.55555556=1.174198

用户1对物品102的总评分计算:

1*0.6186429+3*0+1*0.5188439+2*0.5764197+2*0.8032458=3.896818

用户1对物品103的总评分计算:

0*0.6964322+1*0.5188439+1*0+1*0.662294+0*0.463481=1.181138

用户1对物品104的总评分计算:

0*0.7277142+2*0.5764197+1*0.662294+2*0+1*0.5077338=2.322867

用户1对物品105的总评分计算:

1*0.55555556+2*0.8032458+0*0.463481+1*0.5077338=2.669780

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值