Description
Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N.
"Oh, I know, I know!" Longge shouts! But do you know? Please solve it.
Input
Input contain several test case.
A number N per line.
Output
For each N, output ,∑gcd(i, N) 1<=i <=N, a line
Sample Input
2 6
Sample Output
3 15
题解:选择欧拉函数模板时要注意,之前那种会T,eular(n/i)代表小于等于n与n最大公约数为i的值的个数,再*i就为gcd的和。而n/i*eular(i)求得是最大公约数为n/i的值的gcd的和。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<stack>
#include<vector>
#include<queue>
#include<set>
#include<algorithm>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
#define swap(a,b) (a=a+b,b=a-b,a=a-b)
#define X (sqrt(5)+1)/2.0
#define maxn 320007
#define N 100000000
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define lowbit(x) (x&(-x))
#define read(x) scanf("%d",&x)
#define put(x) printf("%d\n",x)
#define memset(x,y) memset(x,y,sizeof(x))
#define Debug(x) cout<<x<<" "<<endl
#define lson i << 1,l,m
#define rson i << 1 | 1,m + 1,r
#define mod 1000000009
#define e 2.718281828459045
#define eps 1.0e18
#define ll long long
using namespace std;
int eular(ll n)
{
ll ret=n;
for (ll i=2;i*i<=n;i++)
if (n%i==0)
{
ret=ret-ret/i;
while (n%i==0)
n/=i;
}
if(n>1)
ret=ret-ret/n;
return ret;
}
int main()
{
ll n;
while(cin>>n)
{
ll sum=0;
for(ll i=1;i<=sqrt(n);i++)
{
if(n%i==0)
{
sum+=i*eular(n/i);
if(i*i!=n)
sum+=n/i*eular(i);
}
}
cout<<sum<<endl;;
}
}