题目
在各种棋中,棋子的走法总是一定的,如中国象棋中马走“日”。 有一位小学生就想如果马能有两种走法将增加其趣味性, 因此,他规定马既能按“日”走,也能如象一样走“田”字。 他的同桌平时喜欢下围棋,知道这件事后觉得很有趣,就想试一试, 在一个(100*100)的围棋盘上任选两点A、B,A点放上黑子, B点放上白子,代表两匹马。棋子可以按“日”字走, 也可以按“田”字走,俩人一个走黑马,一个走白马。 谁用最少的步数走到左上角坐标为(1,1)的点时,谁获胜。 现在他请你帮忙,给你A、B两点的坐标, 想知道两个位置到(1,1)点可能的最少步数。
#include<bits/stdc++.h> using namespace std; int dx[12]= {-2,-2,-1,1,2,2,2,2,1,-1,-2,-2}, dy[12]= {-1,-2,-2,-2,-2,-1,1,2,2,2,2,1}; int a[105][105],que[10000][4]= {0}; int head=0,tail=1; int main() { memset(a,0xff/*-1*/,sizeof(a)); //初始化a为 int x1,y1,x2,y2; cin>>x1>>y1>>x2>>y2; que[1][1]=1;// q[1]存储从(1,1)可到达点的横坐标 que[1][2]=1; que[1][3]=0;//初始化队列,(1,1) 最少步数0 int x,y; do { head++; for(int k=0; k<12; k++) { //12个方向扩展 x=que[head][1]+dx[k]; y=que[head][2]+dy[k]; if(x>0&&y>0&&x<=100&&y<=100) { if(a[x][y]==-1) { //a[x][y]必须为没扩展过 tail++; a[x][y]=que[head][3]+1;//计算(1,1)到先(x,y)的最小步数 que[tail][1]=x; //(1,1)到(x,y)的最小步数入队 que[tail][2]=y; que[tail][3]=a[x][y]; while(a[x1][y1]>0&&a[x2][y2]>0) { //输出 cout<<a[x1][y1]<<endl; cout<<a[x2][y2]<<endl; return 0; } } } } } while(head<tail); return 0; }
就是这样啦,其实也写了好久,其实广搜的题目都好像