初探逻辑斯蒂回归(LR)

逻辑斯蒂回归是一种经典的分类方法,通过sigmoid函数转换线性回归结果,适合处理二分类问题。模型利用极大似然估计法估计参数,并可通过正则化防止过拟合。LR优点包括模型简单、训练速度快、资源占用小,能提供概率预测。缺点在于准确率有限,处理非线性数据和数据不平衡问题较困难。与SVM相比,LR基于概率,SVM基于几何间隔,SVM自带结构风险最小化,而LR需要正则化实现。
摘要由CSDN通过智能技术生成

逻辑回归(logistic regression)是统计学习中的经典分类方法。逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心。

逻辑斯蒂分布
X X 是连续随机变量, X 服从逻辑斯蒂分布是指 X X 具有下列分布函数与密度函数:

F ( x ) = P ( X x ) = 1 1 + e ( ( x u ) γ )

f(x)=F(x)=e(xu)γγ(1+e(xu)γ)2 f ( x ) = F ′ ( x ) = e − ( x − u ) γ γ ( 1 + e − ( x − u ) γ ) 2

这里写图片描述
逻辑斯蒂分布的密度函数
这里写图片描述
逻辑斯蒂分布的分布函数
特别注意逻辑斯蒂分布的概率分布函数自中心附近增长速度较快,而在两端的增长速度相对较慢。形状参数ss的数值越小,则概率分布函数在中心附近增长越快。

当μ=0,s=1μ=0,s=1 时,逻辑斯蒂分布的概率分布函数就是我们常说的sigmoid函数:

f(α)=11+eα f ( α ) = 1 1 + e − α

且其导数为:
df(α)d(α)=α(1α) d f ( α ) d ( α ) = α ( 1 − α )

这是一个非常好的特性,并且这个特性在后面的推导中将会被用到。
sigmoid函数优点:
输出范围优先,数据在传递的过程中不容易发散。
输出范围为(0,1),所以可以用作输出层,输出表示概率,抑制两头,对中间细微变化敏感,对分类有利。
是任意阶可导的凸函数,有很好的数学性质。

逻辑斯蒂回归为什么要用sigmoid函数:
逻辑回归是广义线性回归的一个特例, y=g1(ω.x+b) y = g − 1 ( ω . x + b ) ,其中函数 g(.) g ( . ) 成为联系函数。逻辑斯蒂函数是一个单调可微,罗辑回归人为函数分布服从伯努利分布,将其写成指数形式就是sigmoid函数。

二项逻辑斯蒂回归模型

二项逻辑斯蒂回归模型是一种分类模型,由条件概率分布 P(Y|X)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值