机器学习初探:(五)逻辑回归之多分类

本文介绍了逻辑回归的多分类方法One-vs-all,通过训练多个二分类逻辑回归模型来解决多类别的问题。以手写数字识别为例,阐述了如何将图像数据转化为模型输入,并展示了模型在训练集上的高准确率。
摘要由CSDN通过智能技术生成

(五)逻辑回归 - 多分类

在这里插入图片描述

图片出处


机器学习初探:(四)逻辑回归之二分类一文中,我们介绍了逻辑回归算法(Logistic regression)。逻辑回归属于 有监督学习中的一种 分类方法,其进行分类的主要思想是:根据现有数据 对决策边界线建立回归公式,以此进行分类。相比于线性回归,逻辑回归通过 Sigmoid 函数将线性回归模型的预测值( Θ T X \Theta^T X ΘTX)映射至 0 和 1 之间, 其输出表示样本属于某一类别的概率

回顾: 逻辑回归模型的基本形式: h Θ ( x ) = 1 1 + e − Θ T X h_\Theta(x) = \frac{1}{1+e^{-\Theta^T X}} hΘ(x)=1+eΘTX1

在上一篇文章中,我们主要讨论的是如何使用逻辑回归训练一个二分类任务,即其输出标记仅有两种,比如是否被录取、邮件是否为垃圾邮件等。然而,现实世界的很多分类任务中具有两个以上分类类别,比如天气状况的预测,即存在晴天( y = 1 y=1 y=1)、多云( y = 2 y = 2 y=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值