(五)逻辑回归 - 多分类
图片出处
在 机器学习初探:(四)逻辑回归之二分类一文中,我们介绍了逻辑回归算法(Logistic regression)。逻辑回归属于 有监督学习中的一种 分类方法,其进行分类的主要思想是:根据现有数据 对决策边界线建立回归公式,以此进行分类。相比于线性回归,逻辑回归通过 Sigmoid 函数将线性回归模型的预测值( Θ T X \Theta^T X ΘTX)映射至 0 和 1 之间, 其输出表示样本属于某一类别的概率。
回顾: 逻辑回归模型的基本形式: h Θ ( x ) = 1 1 + e − Θ T X h_\Theta(x) = \frac{1}{1+e^{-\Theta^T X}} hΘ(x)=1+e−ΘTX1
在上一篇文章中,我们主要讨论的是如何使用逻辑回归训练一个二分类任务,即其输出标记仅有两种,比如是否被录取、邮件是否为垃圾邮件等。然而,现实世界的很多分类任务中具有两个以上分类类别,比如天气状况的预测,即存在晴天( y = 1 y=1 y=1)、多云( y = 2 y = 2 y=