算法流程:
(a) 初始化:用起点v到该顶点w的直接边(弧)初始化最短路径,否则设为∞;
(b) 从未求得最短路径的终点中选择路径长度最小的终点u:即求得v到u的最短路径;
(c) 修改最短路径:计算u的邻接点的最短路径,若(v,…,u)+(u,w)<(v,…,w),则以(v,…,u,w)代替。同时,用path记录每个节点最短路径的前导节点。
(d) 重复(b)-(c),直到求得v到其余所有顶点的最短路径。
一共有N个节点,出发结点为V0,需要一个一维数组path[N]来记录前一个节点序号,一个一维数组dist[N]来记录从原点到当前节点最短路径(初始值为V0到Vi的边的权值,没有则为+∞,这里用MAX=65536来代替无穷大),一个二维数组cost[N][N]来记录各点之间边的权重,按以上流程更新path[N]和dist[N]。
测试:
测试用例用的是课件的例子,总共有7个节点,打印从节点1到别的节点的最短路径。
输出路径,主要用递归输出,printpath打印每个节点的前面的节点,直至到第一个节点。
#include <iostream>
using namespace std;
//点的个数大小
#define N 7
//用MAX表示无穷大
#define MAX 65536
/*
G是一个N结点有向图,它由其成本邻接矩阵cost(n,n)表示DIST(j)被置
以结点v到结点j的最短路径长度,这里1≤j≤n。DIST(v)被置成零,path
用于记录路径
*/
void SHORTEST_PATHS(int v,int cost[N][N],int dist[N],int path[6],int n)
{
//visit数组,记录访问过的节点,访问过置为1,否则置为0
//初始化全为0
int visit[N] = {0};
for(int i=0;i<N;++i)
{
//别的点到V0点的初始化距离
dist[i] = cost[0][i];
//path数组用于记录路径,记录前面的节点
if(dist[i] != MAX)
path[i] = 0;
}
//将V0点置为1表示访问过
visit[0] = 1;
dist[0] = 0;
for(int i=1;i<N;++i)
{
int u;
int temp = MAX;
for(int j=0;j<N;++j)
{
if(visit[j]==0 && dist[j]<temp)
{
//u用来记录下一个被选入集合S的点
u = j;
temp = dist[j];
}
}
visit[u] = 1;
//更新所有点的距离
for(int j=0;j<N;++j)
{
if(visit[j] == 0)
{
//如果加入的点使得距离变小了,就更新
int newdist = dist[u]+cost[u][j];
if(newdist < dist[j])
{
dist[j] = newdist;
path[j] = u;
}
}
}
}
}
//递归打印路径
void printpath(int path[],int end)
{
if(end == 0)
return;
printpath(path,path[end]);
printf("V%d",path[end]);
}
int main()
{
//测试用例,来自课件
int cost[N][N] = {{0,20,50,30,MAX,MAX,MAX},
{MAX,0,25,MAX,MAX,70,MAX},
{MAX,MAX,0,40,25,50,MAX},
{MAX,MAX,MAX,0,55,MAX,MAX},
{MAX,MAX,MAX,MAX,0,10,70},
{MAX,MAX,MAX,MAX,MAX,0,50},
{MAX,MAX,MAX,MAX,MAX,MAX,0},
};
int dist[N];
int path[N];
SHORTEST_PATHS(0,cost,dist,path,N);
cout<<"start\tend\tlength\tnodes list"<<endl;
//格式化输出
for(int i=1;i<N;++i)
{
cout<<"V0\tV"<<i<<"\t"<<dist[i]<<"\t";
printpath(path,i);
cout<<"V"<<i<<endl;
}
return 0;
}