贪心算法-单源最短路径

算法流程:

(a) 初始化:用起点v到该顶点w的直接边()初始化最短路径,否则设为

(b) 从未求得最短路径的终点中选择路径长度最小的终点u:即求得vu的最短路径;

(c) 修改最短路径:计算u的邻接点的最短路径,若(v,…,u)+(u,w)<(v,…,w),则以(v,…,u,w)代替。同时,用path记录每个节点最短路径的前导节点。

(d) 重复(b)-(c),直到求得v到其余所有顶点的最短路径。

一共有N个节点,出发结点为V0,需要一个一维数组path[N]来记录前一个节点序号,一个一维数组dist[N]来记录从原点到当前节点最短路径(初始值为V0Vi的边的权值,没有则为+∞,这里用MAX=65536来代替无穷大),一个二维数组cost[N][N]来记录各点之间边的权重,按以上流程更新path[N]dist[N]

测试:

测试用例用的是课件的例子,总共有7个节点,打印从节点1到别的节点的最短路径。

输出路径,主要用递归输出,printpath打印每个节点的前面的节点,直至到第一个节点。

#include <iostream>

using namespace std;
//点的个数大小
#define N 7
//用MAX表示无穷大
#define MAX 65536

/*
G是一个N结点有向图,它由其成本邻接矩阵cost(n,n)表示DIST(j)被置
以结点v到结点j的最短路径长度,这里1≤j≤n。DIST(v)被置成零,path
用于记录路径
*/
void SHORTEST_PATHS(int v,int cost[N][N],int dist[N],int path[6],int n)
{
    //visit数组,记录访问过的节点,访问过置为1,否则置为0
    //初始化全为0
    int visit[N] = {0};
    for(int i=0;i<N;++i)
    {
        //别的点到V0点的初始化距离
        dist[i] = cost[0][i];
        //path数组用于记录路径,记录前面的节点
        if(dist[i] != MAX)
            path[i] = 0;
    }
    //将V0点置为1表示访问过
    visit[0] = 1;
    dist[0] = 0;
    for(int i=1;i<N;++i)
    {
        int u;
        int temp = MAX;
        for(int j=0;j<N;++j)
        {
            if(visit[j]==0 && dist[j]<temp)
            {
                //u用来记录下一个被选入集合S的点
                u = j;
                temp = dist[j];
            }
        }
        visit[u] = 1;
        //更新所有点的距离
        for(int j=0;j<N;++j)
        {
            if(visit[j] == 0)
            {
                //如果加入的点使得距离变小了,就更新
                int newdist = dist[u]+cost[u][j];
                if(newdist < dist[j])
                {
                    dist[j] = newdist;
                    path[j] = u;
                }
            }
        }
    }
}
//递归打印路径
void printpath(int path[],int end)
{
    if(end == 0)
        return;
    printpath(path,path[end]);
    printf("V%d",path[end]);
}

int main()
{
    //测试用例,来自课件
    int cost[N][N] = {{0,20,50,30,MAX,MAX,MAX},
                      {MAX,0,25,MAX,MAX,70,MAX},
                      {MAX,MAX,0,40,25,50,MAX},
                      {MAX,MAX,MAX,0,55,MAX,MAX},
                      {MAX,MAX,MAX,MAX,0,10,70},
                      {MAX,MAX,MAX,MAX,MAX,0,50},
                      {MAX,MAX,MAX,MAX,MAX,MAX,0},
                     };
    int dist[N];
    int path[N];
    SHORTEST_PATHS(0,cost,dist,path,N);
    cout<<"start\tend\tlength\tnodes list"<<endl;
    //格式化输出
    for(int i=1;i<N;++i)
    {
        cout<<"V0\tV"<<i<<"\t"<<dist[i]<<"\t";
        printpath(path,i);
        cout<<"V"<<i<<endl;
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值