### 解决方案概述
要解决红绿灯和路径时间的总耗时问题,可以通过结合图论中的最短路径算法以及动态规划的思想来实现。具体而言,Dijkstra 算法虽然能够找到两点间的最短路径[^1],但在实际场景中还需要考虑额外的时间因素(如红绿灯等待时间)。因此,可以在传统最短路径算法的基础上引入时间维度。
以下是解决问题的具体方法:
---
### 方法描述
#### 1. 图模型构建
将城市交通网络建模为加权有向图 \( G(V, E) \),其中:
- 节点 \( V \) 表示交叉口或重要位置;
- 边 \( E \) 表示路段,每条边有权重表示通过该路段所需的基础时间。
此外,还需记录每个节点处红绿灯的状态及其周期信息。
#### 2. 时间扩展图
为了处理红绿灯的影响,可以采用 **时间扩展图** 的方式。即对于每一个时刻 \( t \),创建一个新的状态节点,并将其与下一时刻的状态连接起来。这样做的好处是可以显式地表达因红绿灯而产生的延迟。
假设某节点 A 处有一个红绿灯,其周期为 T 秒,则在时间扩展图中,A 可能会有多个副本分别对应不同的到达时间窗口。
#### 3. 动态规划方程
定义状态转移函数如下:
\[ f(v, t) = \min_{u \in pred(v)}(f(u, s) + c(s, v)) \]
其中:
- \( u \) 是当前节点 \( v \) 的前驱节点集合;
- \( s \) 是从 \( u \) 到达 \( v \) 所需的实际出发时间;
- \( c(s, v) \) 是从 \( u \) 出发并经过可能的红绿灯延时后到达 \( v \) 的成本。
此方程的核心在于综合考虑基础通行时间和红绿灯引起的额外等待时间。
#### 4. 实现代码
下面是一个简单的 Python 实现框架,用于计算带红绿灯约束的最短路径总耗时:
```python
import heapq
def shortest_path_with_traffic_lights(graph, start, end, traffic_light_info):
"""
计算带有红绿灯影响的最短路径总耗时。
:param graph: 字典形式的邻接表 {node: [(neighbor, cost)]}
:param start: 起始节点
:param end: 终止节点
:param traffic_light_info: 红绿灯信息字典 {node: (cycle_time, green_duration)}
:return: 总耗时
"""
pq = [] # 优先队列
time_map = {} # 存储各节点最早到达时间
# 初始化起始节点
initial_time = 0
heapq.heappush(pq, (initial_time, start))
time_map[start] = initial_time
while pq:
current_time, node = heapq.heappop(pq)
# 如果已经到达终点则返回结果
if node == end:
return current_time
# 遍历邻居节点
for neighbor, base_cost in graph[node]:
arrival_time = current_time + base_cost
# 检查是否有红绿灯阻塞
if node in traffic_light_info:
cycle_time, green_duration = traffic_light_info[node]
red_start = ((arrival_time // cycle_time) * cycle_time) + green_duration
if arrival_time >= red_start and arrival_time < red_start + (cycle_time - green_duration):
# 若处于红灯阶段,则调整到达时间为下一个绿灯开始时间
arrival_time = red_start + (cycle_time - green_duration)
# 更新最小到达时间
if neighbor not in time_map or arrival_time < time_map[neighbor]:
time_map[neighbor] = arrival_time
heapq.heappush(pq, (arrival_time, neighbor))
return float('inf') # 如无法抵达目标节点
# 示例输入
graph = {
'A': [('B', 5), ('C', 8)],
'B': [('C', 2), ('D', 7)],
'C': [('D', 3)],
'D': []
}
traffic_light_info = {'B': (10, 6), 'C': (15, 9)}
print(shortest_path_with_traffic_lights(graph, 'A', 'D', traffic_light_info))
```
上述代码利用了优先队列实现了类似于 Dijkstra 的广度优先搜索逻辑,同时加入了对红绿灯状态的判断以修正预计到达时间。
---
### 结果分析
运行以上程序可得到从起点到终点的最少总耗时。这种方法不仅适用于静态路网条件下的路径规划,还支持动态环境变化情况下的实时更新需求。
---
###