@lstm训练股票数据 TOC
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
import matplotlib.pyplot as plt
import numpy as np
读取数据 数据为tushare下载的0000001.sz的数据保存为txt文件
df = pd.read_csv(‘D:/2/df.txt’,delimiter=‘\t’, encoding=‘utf-8’)
设置日期为索引
df = df.set_index(‘trade_date’)
提取收盘价作为目标变量
close = df[‘close’].values.reshape(-1,1)
特征缩放
scaler = MinMaxScaler(feature_range=(0, 1))
close_scaled = scaler.fit_transform(close)
划分训练集和测试集
train_size = int(len(close_scaled) * 0.8)
train = close_scaled[:train_size]
test = close_scaled[train_size:]
构建数据集
def create_dataset(data, window_size=20):
X, y = [], []
for i in range(len(data)-window_size-1):
features = data[i:(i+window_size)]
target = data[i+window_size]
X.append(features)
y.append(target)
return np.array(X), np.array(y)
X_train, y_train = create_dataset(train, 20)
X_test, y_test = create_dataset(test, 20)
y_test = y_test.reshape(-1, 1)
LSTM模型
model = Sequential()
model.add(LSTM(64, input_shape=(X_train.shape1, X_train.shape2)))
model.add(Dense(1))
model.compile(loss=‘mae’, optimizer=‘adam’)
model.fit(X_train, y_train, epochs=100, batch_size=16, verbose=1,shuffle=False)
预测
y_pred = model.predict(X_test)
y_test = y_test.reshape(-1, 1)
y_pred = y_pred.reshape(-1, 1)
反标准化
y_test = scaler.inverse_transform(y_test)
y_pred = scaler.inverse_transform(y_pred)
策略回测
buy_signals = np.where(np.diff(y_pred) > 0)
sell_signals = np.where(np.diff(y_pred) < 0)
profits = []
for i in range(len(buy_signals[0])):
buy_price = y_test[buy_signals[0][i]]
sell_price = y_test[sell_signals[0][i]+1]
profit = (sell_price - buy_price) / buy_price
profits.append(profit)
评价
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print(‘Test RMSE: %.3f’ % rmse)
绘图
plt.plot(y_test, label=‘Actual Price’)
plt.scatter(buy_signals[0], y_test[buy_signals[0]], marker=‘^’, s=200, color=‘green’, label=‘Buy’)
plt.scatter(sell_signals[0], y_test[sell_signals[0]], marker=‘v’, s=200, color=‘red’, label=‘Sell’)
plt.plot(profits, label=‘Profit’)
plt.legend()
plt.show()
欢迎使用Markdown编辑器
你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。
新的改变
我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:
- 全新的界面设计 ,将会带来全新的写作体验;
- 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
- 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
- 全新的 KaTeX数学公式 语法;
- 增加了支持甘特图的mermaid语法1 功能;
- 增加了 多屏幕编辑 Markdown文章功能;
- 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
- 增加了 检查列表 功能。
功能快捷键
撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G
合理的创建标题,有助于目录的生成
直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC
语法后生成一个完美的目录。
如何改变文本的样式
强调文本 强调文本
加粗文本 加粗文本
标记文本
删除文本
引用文本
H2O is是液体。
210 运算结果是 1024.
插入链接与图片
链接: link.
图片:
带尺寸的图片:
居中的图片:
居中并且带尺寸的图片:
当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。
如何插入一段漂亮的代码片
去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片
.
// An highlighted block
var foo = 'bar';
生成一个适合你的列表
- 项目
- 项目
- 项目
- 项目
- 项目1
- 项目2
- 项目3
- 计划任务
- 完成任务
创建一个表格
一个简单的表格是这么创建的:
项目 | Value |
---|---|
电脑 | $1600 |
手机 | $12 |
导管 | $1 |
设定内容居中、居左、居右
使用:---------:
居中
使用:----------
居左
使用----------:
居右
第一列 | 第二列 | 第三列 |
---|---|---|
第一列文本居中 | 第二列文本居右 | 第三列文本居左 |
SmartyPants
SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:
TYPE | ASCII | HTML |
---|---|---|
Single backticks | 'Isn't this fun?' |
‘Isn’t this fun?’ |
Quotes | "Isn't this fun?" |
“Isn’t this fun?” |
Dashes | -- is en-dash, --- is em-dash |
– is en-dash, — is em-dash |
创建一个自定义列表
-
Markdown
- Text-to- HTML conversion tool Authors
- John
- Luke
如何创建一个注脚
一个具有注脚的文本。2
注释也是必不可少的
Markdown将文本转换为 HTML。
KaTeX数学公式
您可以使用渲染LaTeX数学表达式 KaTeX:
Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n−1)!∀n∈N 是通过欧拉积分
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞