本文转自:http://blog.csdn.net/lyso1/archive/2010/05/27/5627898.aspx,如有版权问题,请即使通知我删除!!!
平衡二叉树 ( AVL 树 ):
二 叉排序树的查找与树的形态密切相关,当树的形态比较均衡时查找效率最高,当树的形态偏向于某一个方向是效率迅速降低,而一颗二叉树的形态取决于数据插入的 先后顺序,如果构造一颗较均衡的二叉树比较困难。那有没有合适的方法把一颗不平衡的树调整为平衡的二叉树,答案是肯定的。这就是平衡二叉树在 1962 年由 Adelson-Velskii 和 Landis 提出的,所以又叫 AVL 树。
其特点是:或者是一颗空树,或者是满足下列性质的二叉树:树的左子树和右子树的深度之差的绝对值不大于 1 且左右子树也满足上述性质。
平衡因子:二叉树上任一结点的左子树深度减去右子树的深度称为该结点的平衡因子,易知平衡二叉树中所有结点的因子只可能为 0 , -1 和 1.
平 衡二叉排序树的在平衡因子绝对值等于2时开始调整到绝对值为1或0,在平衡因子绝对值为2时,二叉排序树会出现四种不同的情况的树形,因此这时需要分别单 独讨论来降低平衡因子。由于前面画的图都没有上传上来,暂时还不知道CSDN博客里怎么上传图,所以这里暂不做详解。如果要讨论四种情况,请参见源代码细 细分析: