tf.strided_slice函数

在看cifar10的例子的时候,必然会看到一个函数,官方给的文档注释长而晦涩,基本等于0.网上也有这个函数,但解释差劲或者基本没有解释,函数的原型是酱紫的.

def strided_slice(input_,
                  begin,
                  end,
                  strides=None,
                  begin_mask=0,
                  end_mask=0,
                  ellipsis_mask=0,
                  new_axis_mask=0,
                  shrink_axis_mask=0,
                  var=None,
                  name=None):
  """Extracts a strided slice from a tensor.
'input'= [[[1, 1, 1], [2, 2, 2]],  [[3, 3, 3], [4, 4, 4]],  [[5, 5, 5], [6, 6, 6]]]

来把输入变个型,可以看成3维的tensor,从外向为1,2,3维

[
     [
          [1,1,1]
          [2,2,2]
     ]
     [
         [3,3,3]
         [4,4,4]
     ]
     [
         [5,5,5]
         [6,6,6]
     ]
]

以tf.strided_slice(input, [0,0,0], [2,2,2], [1,2,1])调用为例,start = [0,0,0] , end = [2,2,2], stride = [1,2,1],求一个[start, end)的一个片段,注意end为开区间
第1维 start = 0 , end = 2, stride = 1, 所以取 0 , 1行,此时的输出

output1=
[
     [
          [1,1,1]
          [2,2,2]
     ]
     [
         [3,3,3]
         [4,4,4]
     ]
]
第2维时, start = 0 , end = 2 , stride = 2, 所以只能取0行,此时的输出

output2=
[
     [
          [1,1,1]
     ]
     [
         [3,3,3]
     ]
]
第3维的时候,start = 0, end = 2, stride = 1, 可以取0,1行,此时得到的就是最后的输出

output3=
[
     [
          [1,1]
     ]
     [
         [3,3]
     ]
]
整理之后最终的输出为:
[[[1,1],[3,3]]]
类似代码如下:

import tensorflow as tf 
data = [[[1, 1, 1], [2, 2, 2]], 
[[3, 3, 3], [4, 4, 4]], 
[[5, 5, 5], [6, 6, 6]]] 
x = tf.strided_slice(data,[0,0,0],[1,1,1]) 
with tf.Session() as sess: 
       print(sess.run(x))

更多的情况可以参考 www.jianshu.com/p/a1a9e44708f6

 

 

没有更多推荐了,返回首页