system.data.sqlclient.sqlexception:timeout expired

本文记录了一次使用WCF服务查询数据时遇到的客户端通信错误排查经历。作者最初怀疑是客户端调用服务时出现问题,经过长时间排查,最终发现是由于服务端执行SQL语句或存储过程时因运算量巨大而超时。文章分享了解决方案,并提供了一个增加执行时间限制的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天在测试一个通过wcf服务查询数据的程序时,一直出现这个错误。这个错误是在:

catch (System.ServiceModel.CommunicationException e)             

 {

      XtraMessageBox.Show("对不起!客户端获取服务数据通信报错!请查看服务是否正常!"+e.HelpLink+","+e.InnerException+","+e.Message+","+e.StackTrace+","+e.TargetSite+"", "系统提示", MessageBoxButtons.OK,                                                    MessageBoxIcon.Information);       }             

 开始我一直在客户端找原因,以为是调用服务的时候超时,经过一天半的纠结,崩溃,最后找出了,是由于执行sql语句或者存储过程时,因为涉及运算量巨大,所有超时。这个超时被服务端捕获到,然后传递到了客户端,所有在客户端一直会弹出这个错误。

解决办法:

using (SqlConnection conn = new SqlConnection(connectionString))       

 {          conn.Open();     

            DataTable dt = new DataTable();            

           SqlCommand cmd = new SqlCommand();      

           cmd.CommandType = CommandType.StoredProcedure;    

           cmd.CommandText = cmdText;       

           cmd.Connection = conn;    

           cmd.CommandTimeout = 300;//给执行加了个时间    

           if (paras != null)            

       {                   

        foreach (SqlParameter p in paras)             

                cmd.Parameters.Add(p);            

       }               

      try      

           {                  

          SqlDataAdapter da = new SqlDataAdapter(cmd);        

               da.Fill(dt);       

          }              

     catch (Exception ex)                 {  throw ex;  }      

         finally                

     {  cmd.Dispose();}            

      return dt;        

     }

查询数据量一定时,除了算法优化,查询速度还跟电脑的cpu等配置有关。

转载于:https://www.cnblogs.com/HedgehogBlog/p/3490668.html

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值