一维前缀、一维差分、二维前缀和

一维前缀和

输入一个长度为n的整数序列。
接下来再输入m个询问,每个询问输入一对l, r。
对于每个询问,输出原序列中从第l个数到第r个数的和。
输入格式
第一行包含两个整数n和m。
第二行包含n个整数,表示整数数列。
接下来m行,每行包含两个整数l和r,表示一个询问的区间范围。
输出格式
共m行,每行输出一个询问的结果。
数据范围
1≤l≤r≤n,
1≤n,m≤100000,1000≤数列中元素的值≤1000
输入样例:
5 3
2 1 3 6 4
1 2
1 3
2 4
输出样例:
3
6
10
#include <bits/stdc++.h>
using namespace std;
const int maxn=100300;
int s[maxn],a[maxn];

int main(){
	
	int n,m;
	cin>>n>>m;

	for(int i=1;i<=n;i++)
	 cin>>a[i];
	 
    for(int i=1;i<=n;i++){
    	s[i]=s[i-1]+a[i];//把所有下表的前n项和都求出来 准备着 
    }
    //进行m次查询  第l--r项的的和 
	while(m--){
	int l,r;
	cin>>l>>r;
	cout<<s[r]-s[l-1]<<" ";
	//求第l~r项的和,即前r项的和s[r]减去前l-1项的和s[l-1]; 
	}	 
} 

一维差分

s数组是a数组的前缀和数组,反过来我们把a数组叫做s数组的差分数组。换句话说,每一个s[i]都是a数组中从头开始的一段区间和.
s[i]=s[i-1]+a[i];  ---a[i]=s[i]-s[i-1];

差分a数组中的a[l] + c ,会影响s数组变成 s[l] + c ,s[l+1] + c,,,,,, s[n] + c;
差分a数组中的a[l] + c ,会影响s数组变成 s[l] + c ,s[l+1] + c,,,,,, s[n] + c;
一维差分结论:给s数组中的[ l, r]区间中的每一个数都加上c,只需对差分数组a做 a[l] + = c, a[r+1] - = c。时间复杂度为O(1), 大大提高了效率。

在这里插入图片描述
例题:

输入一个长度为n的整数序列。
接下来输入m个操作,每个操作包含三个整数l, r, c,表示将序列中[l, r]之间的每个数加上c。
请你输出进行完所有操作后的序列。
**输入格式**
第一行包含两个整数n和m。
第二行包含n个整数,表示整数序列。
接下来m行,每行包含三个整数l,r,c,表示一个操作。
**输出格式**
共一行,包含n个整数,表示最终序列。
数据范围
1≤n,m≤100000,
1≤l≤r≤n,1000≤c≤1000,1000≤整数序列中元素的值≤1000
**输入样例**6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1
输出样例:**
3 4 5 3 4 2
#include <bits/stdc++.h>
using namespace std;
const int maxn=110;
int m,n;
int l,r,c;
int s[maxn],a[maxn]; 
int main(){
	cin>>n>>m;
	a[0]=0;s[0]=0; 
	//求 差分数组 是求 前缀和  逆运算 
	//  前缀和 是已知a[]数组求s[]
	// 差分数组是 已知s[]数组求a[] 
	for(int i=1;i<=n;i++){
		cin>>s[i];
	}
	for(int i=1;i<=n;i++){
     	a[i]=s[i]-s[i-1];//求差分数组 
	}
	
	while(m--){
	cin>>l>>r>>c;
      a[l]+=c;
      a[r+1]-=c;
  	
  }
  for(int i=l;i<=r;i++){
	//	a[i]+=a[i-1];//求前缀和 
      s[i]=s[i-1]+a[i];
		cout<<s[i]<<" ";
	}
	return 0;
}

二维前缀和

二维前缀和预处理公式
在这里插入图片描述

点(11)到点(i,j)的矩形和为:
s[i] [j] = s[i-1][j] + s[i][j-1 ] + a[i] [j] - s[i-1][ j-1]
点(x1,y1)到点(x2,y2)的矩形和为:
temp = s[x2, y2] - s[x1 - 1, y2] - s[x2, y1 - 1] + s[x1 - 1, y1 - 1]

在这里插入图片描述

练习一道完整题目:
输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1, y1, x2, y2,表示一个子矩阵的左上角坐标和右下角坐标。

对于每个询问输出子矩阵中所有数的和。

输入格式
第一行包含三个整数n,m,q。

接下来n行,每行包含m个整数,表示整数矩阵。

接下来q行,每行包含四个整数x1, y1, x2, y2,表示一组询问。

输出格式
共q行,每行输出一个询问的结果。

数据范围
1≤n,m≤1000,
1≤q≤200000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1010;
int a[N][N],s[N][N];
int main()
{
    int n,m,q;
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1;i<=n;i++)
      for(int j=1;j<=m;j++)
       scanf("%d",&a[i][j]);
    for(int i=1;i<=n;i++)
      for(int j=1;j<=m;j++)
        s[i][j]=s[i-1][j]+s[i][j-1]+a[i][j]-s[i-1][j-1];
    while(q--)
    {
        int x1,y1,x2,y2;
        scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        printf("%d\n",s[x2][y2]-s[x2][y1-1]-s[x1-1][y2]+s[x1-1][y1-1]);
    }
    return 0;
}

### 一维前缀和与差分 #### 计算方法 在一维情况下,给定一个长度为 \( n \) 的数组 `arr`,其对应的前缀和数组 `prefix_sum` 定义如下: \[ prefix\_sum[i] = arr[0] + arr[1] + ... + arr[i],\quad i=0,1,...,n-1 \] 通过构建这个前缀和数组,可以在常数时间内查询任意区间 `[l,r]` 上元素之和。 ```python def build_prefix_sum_1d(arr): n = len(arr) prefix_sum = [0] * (n + 1) for i in range(1, n + 1): prefix_sum[i] = prefix_sum[i - 1] + arr[i - 1] return prefix_sum def query_range_sum(prefix_sum, l, r): return prefix_sum[r + 1] - prefix_sum[l] # Example usage: array = [3, 1, 5, 2, 7, 4] ps = build_prefix_sum_1d(array) print(query_range_sum(ps, 1, 3)) # Output should be 8 which is sum of elements from index 1 to 3. ``` 对于一维差分,则定义了一个新的数组 `diff` 来表示相邻两个位置的变化量。当需要频繁更新某个区间的值时,仅需修改该区间的起点和终点处的数值即可实现高效的操作[^2]. --- ### 前缀和与差分 #### 计算方法 扩展到维空间中,假设有一个大小为 \( m×n \) 的矩阵 `matrix`,那么它的前缀和可以通过下面的方式计算得到: \[ preSum(i,j)=preSum(i−1,j)+preSum(i,j−1)−preSum(i−1,j−1)+matrix(i,j),\quad i>0,\ j>0 \] 这里需要注意的是边界条件处理;而对于整个区域内的求和则可通过四个角点来快速得出结果。 ```python def build_prefix_sum_2d(matrix): rows = len(matrix) cols = len(matrix[0]) ps = [[0]*(cols+1) for _ in range(rows+1)] for row in range(1,rows+1): for col in range(1,cols+1): ps[row][col]=ps[row-1][col]+ps[row][col-1]-ps[row-1][col-1]+matrix[row-1][col-1] return ps def get_region_sum(ps,top_left,bottom_right): top,left=top_left bottom,right=bottom_right total_area=ps[bottom+1][right+1] remove_top=ps[top][right+1] remove_left=ps[bottom+1][left] add_overlap=ps[top][left] return total_area-remove_top-remove_left+add_overlap example_matrix=[ [6 ,5 ,-4], [-2,-1, 9 ], [7 ,8 ,-3 ] ] ps_example=build_prefix_sum_2d(example_matrix) result=get_region_sum(ps_example,(0,0),(1,1)) print(result)# Should output the sum within specified region according to example matrix and coordinates given above. ``` 同样,在维场景下也可以利用差分的思想来进行高效的批量加减法运算,特别是在面对矩形区域内增加相同值的需求时非常有用[^3]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值