一维前缀和
输入一个长度为n的整数序列。
接下来再输入m个询问,每个询问输入一对l, r。
对于每个询问,输出原序列中从第l个数到第r个数的和。
输入格式
第一行包含两个整数n和m。
第二行包含n个整数,表示整数数列。
接下来m行,每行包含两个整数l和r,表示一个询问的区间范围。
输出格式
共m行,每行输出一个询问的结果。
数据范围
1≤l≤r≤n,
1≤n,m≤100000,
−1000≤数列中元素的值≤1000
输入样例:
5 3
2 1 3 6 4
1 2
1 3
2 4
输出样例:
3
6
10
#include <bits/stdc++.h>
using namespace std;
const int maxn=100300;
int s[maxn],a[maxn];
int main(){
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=1;i<=n;i++){
s[i]=s[i-1]+a[i];//把所有下表的前n项和都求出来 准备着
}
//进行m次查询 第l--r项的的和
while(m--){
int l,r;
cin>>l>>r;
cout<<s[r]-s[l-1]<<" ";
//求第l~r项的和,即前r项的和s[r]减去前l-1项的和s[l-1];
}
}
一维差分
s数组是a数组的前缀和数组,反过来我们把a数组叫做s数组的差分数组。换句话说,每一个s[i]都是a数组中从头开始的一段区间和.
s[i]=s[i-1]+a[i]; ---a[i]=s[i]-s[i-1];
差分a数组中的a[l] + c ,会影响s数组变成 s[l] + c ,s[l+1] + c,,,,,, s[n] + c;
差分a数组中的a[l] + c ,会影响s数组变成 s[l] + c ,s[l+1] + c,,,,,, s[n] + c;
一维差分结论:给s数组中的[ l, r]区间中的每一个数都加上c,只需对差分数组a做 a[l] + = c, a[r+1] - = c。时间复杂度为O(1), 大大提高了效率。
例题:
输入一个长度为n的整数序列。
接下来输入m个操作,每个操作包含三个整数l, r, c,表示将序列中[l, r]之间的每个数加上c。
请你输出进行完所有操作后的序列。
**输入格式**
第一行包含两个整数n和m。
第二行包含n个整数,表示整数序列。
接下来m行,每行包含三个整数l,r,c,表示一个操作。
**输出格式**
共一行,包含n个整数,表示最终序列。
数据范围
1≤n,m≤100000,
1≤l≤r≤n,
−1000≤c≤1000,
−1000≤整数序列中元素的值≤1000
**输入样例**:
6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1
输出样例:**
3 4 5 3 4 2
#include <bits/stdc++.h>
using namespace std;
const int maxn=110;
int m,n;
int l,r,c;
int s[maxn],a[maxn];
int main(){
cin>>n>>m;
a[0]=0;s[0]=0;
//求 差分数组 是求 前缀和 逆运算
// 前缀和 是已知a[]数组求s[]
// 差分数组是 已知s[]数组求a[]
for(int i=1;i<=n;i++){
cin>>s[i];
}
for(int i=1;i<=n;i++){
a[i]=s[i]-s[i-1];//求差分数组
}
while(m--){
cin>>l>>r>>c;
a[l]+=c;
a[r+1]-=c;
}
for(int i=l;i<=r;i++){
// a[i]+=a[i-1];//求前缀和
s[i]=s[i-1]+a[i];
cout<<s[i]<<" ";
}
return 0;
}
二维前缀和
二维前缀和预处理公式
点(1,1)到点(i,j)的矩形和为:
s[i] [j] = s[i-1][j] + s[i][j-1 ] + a[i] [j] - s[i-1][ j-1]
点(x1,y1)到点(x2,y2)的矩形和为:
temp = s[x2, y2] - s[x1 - 1, y2] - s[x2, y1 - 1] + s[x1 - 1, y1 - 1]
练习一道完整题目:
输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1, y1, x2, y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
输入格式
第一行包含三个整数n,m,q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含四个整数x1, y1, x2, y2,表示一组询问。
输出格式
共q行,每行输出一个询问的结果。
数据范围
1≤n,m≤1000,
1≤q≤200000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1010;
int a[N][N],s[N][N];
int main()
{
int n,m,q;
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
s[i][j]=s[i-1][j]+s[i][j-1]+a[i][j]-s[i-1][j-1];
while(q--)
{
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
printf("%d\n",s[x2][y2]-s[x2][y1-1]-s[x1-1][y2]+s[x1-1][y1-1]);
}
return 0;
}