BFS 走迷宫问题、迷宫最短路(最短步数并打印出来)

走迷宫问题

给定一个nm大小的迷宫,其中代表不可通过的墙壁,而.代表平地,S代表起点,T代表终点。
移动过程中,如果当前位置是(x,y)(下标从0开始),且每次只能前往上下左右四个位置的平地。

求从起点S到达终点T的最少步数。
输入

5 5
.....
.*.*.
.*S*.
.***.
...T*
2 2 4 3

输出

11

模板: 两次push; 一次pop;

void bfs()
{
	queue<node> q;//一般用stl库中的queue来实现队列比较方便
	q.push(起点S);//将初始状态入队
	标记初始状态已入队。
	while(!q.empty())//队列不为空就执行入队出队操作
	{
		top = q.front();//取出队首
		q.pop();//队首出队
		for (枚举所有可扩展的状态)
		{
			if (check())//状态合法
			{
				q.push(temp);//状态入队
				标记成已入队。
			}
			
		}
	}

代码:

#include<iostream>
#include<queue>
using namespace std;
const int maxn = 101;
char a[maxn][maxn];
bool inq[maxn][maxn] = {false};
int n,m;//n行m列
int fx[5]={0,-1,0,1,0};
int fy[5]={0,0,1,0,-1};
struct node{
	int x,y;
	int step;
}s,t,temp;//s起点 t终点 Node临时节点相当于temp 

bool check(int x,int y){//判断位置(x,y)是否有效
	if(x<0||x>=n||y<0||y>=m) return false;
	if(a[x][y]=='*'|| inq[x][y] == true) return false;
	return true;
}
int bfs(){
	queue<node> q; ;//定义队列
    q.push(s);//将起点入队
	s.step = 0;
	inq[s.x][s.y] = true;//将起点设为已入队
	while(!q.empty()){//队列不为空执行
		node top = q.front();//取出队首元素
		q.pop();
		if(top.x == t.x && top.y == t.y) {
			return top.step ;
		}
		for(int i=1;i<=4;i++){//枚举四个方向
			int tx = top.x + fx[i];
            int ty = top.y + fy[i];

			if(check(tx,ty)){
				//temp中间变量 
				temp.x=tx;
				temp.y=ty;
				temp.step=top.step+1;
				q.push(temp);
				inq[tx][ty] = true;
			}
		}
	}
	return -1;
}
int main()
{
	cin>>n>>m;
	for(int i=0;i<n;i++){
		for(int j=0;j<m;j++){
			cin>>a[i][j];
		}
	}
	cin>>s.x>>s.y>>t.x>>t.y;
	cout<<bfs()<<endl;
	return 0;
}

迷宫最短路(最短步数并打印出来)

题目描述
下图给出了一个迷宫的平面图,其中标记为 1 的为障碍,标记为 0 的为可 以通行的地方。

010000
000100
001001
110000

迷宫的入口为左上角,出口为右下角,在迷宫中,只能从一个位置走到这 个它的上、下、左、右四个方向之一。 对于上面的迷宫,从入口开始,可以按DRRURRDDDR 的顺序通过迷宫, 一共 10 步。其中 D、U、L、R 分别表示向下、向上、向左、向右走。 对于下面这个更复杂的迷宫(30 行 50 列),请找出一种通过迷宫的方式, 其使用的步数最少,在步数最少的前提下,请找出字典序最小的一个作为答案。 请注意在字典序中D<L<R<U。

题目给出的数据: 30行 50列

01010101001011001001010110010110100100001000101010
00001000100000101010010000100000001001100110100101
01111011010010001000001101001011100011000000010000
01000000001010100011010000101000001010101011001011
00011111000000101000010010100010100000101100000000
11001000110101000010101100011010011010101011110111
00011011010101001001001010000001000101001110000000
10100000101000100110101010111110011000010000111010
00111000001010100001100010000001000101001100001001
11000110100001110010001001010101010101010001101000
00010000100100000101001010101110100010101010000101
11100100101001001000010000010101010100100100010100
00000010000000101011001111010001100000101010100011
10101010011100001000011000010110011110110100001000
10101010100001101010100101000010100000111011101001
10000000101100010000101100101101001011100000000100
10101001000000010100100001000100000100011110101001
00101001010101101001010100011010101101110000110101
11001010000100001100000010100101000001000111000010
00001000110000110101101000000100101001001000011101
10100101000101000000001110110010110101101010100001
00101000010000110101010000100010001001000100010101
10100001000110010001000010101001010101011111010010
00000100101000000110010100101001000001000000000010
11010000001001110111001001000011101001011011101000
00000110100010001000100000001000011101000000110011
10101000101000100010001111100010101001010000001000
10000010100101001010110000000100101010001011101000
00111100001000010000000110111000000001000000001011
10000001100111010111010001000110111010101101111000
#include <bits/stdc++.h>
using namespace std;
const int maxn=80;
int fx[5]={0,1,0,0,-1};//下上左右 
int fy[5]={0,0,-1,1,0};
char a[maxn][maxn];//题目数据无间隔,必须用字符型存储路线 

bool inq[maxn][maxn]={false};
int n,m;
struct node{
	int x;
	int y;
	int step;
	char pos;//1->D 
}s,e,top,temp;//s起点坐标 e终点坐标 top队首 temp队首的下一个节点 
//记录路径用node类型的father[][]来存储当前节点的父节点的坐标; 
node father[maxn][maxn]; 

int check(int x,int y){
	if(x<0||x>=n||y<0||y>=m) return 0;
	if(inq[x][y]==true) return 0;
	if(a[x][y]=='1') return 0;
	return 1;
	
}
/*遍历路径用dfs深搜来遍历,传入最后的终点,
让其找到起点再打印每一步的方向。

因为到达终点的最短路径只有一条,用dfs从后往前找相应的父节点一定是唯一的,
可以减少从起点到终点的多条路径。

过程:从终点找到起点,开始正向打印出来每一步路径。
类似于栈这种数据结构.

dfs就是从后往前再从前往后,优点就是可以找到唯一的一条路径。
二维数组是最常用来记录路径的方法,
递归打印也是最常用的打印路径的方法。
*/ 
void dfs(int x,int y)//递归打印
{
    if(x==0&&y==0)//找到起点开始正向打印路径
        return;
    else
        dfs(father[x][y].x,father[x][y].y);

    cout<<father[x][y].pos;
}

int bfs(){
	  queue<node> q;
	  q.push(s);
	  s.step=0;
	  inq[s.x][s.y]=true;
	  
	  while(!q.empty()){
	    top=q.front();
	    q.pop();
	   if(top.x==e.x&&top.y==e.y){
       return top.step;
	  }
	  
	   for(int i=1;i<=4;i++){ 
	   	int tx=top.x+fx[i];
	   	int ty=top.y+fy[i];
	   	 
	   	  if(check(tx,ty)){
	   	  	temp.x=tx;
		    temp.y=ty;
	   	  	temp.step=top.step+1;
	   	  	q.push(temp);
	   	  	inq[tx][ty]=true;
	   	  	//与上题不同之处 -----start 
	   	  	father[tx][ty].x=top.x; //father[][]来存储当前节点的父节点的坐标;
	   	  	father[tx][ty].y=top.y;
	   	  	if(i==1)//存储路径
                father[tx][ty].pos='D';
            else if(i==2)
                father[tx][ty].pos='L';
            else if(i==3)
                father[tx][ty].pos='R';
            else if(i==4)
                father[tx][ty].pos='U';
            //与上题不同之处-----end 
	   	  }
	    }
	  }
	 return -1;
}
int main(){
cin>>n>>m;// 30 50
cin>>s.x>>s.y>>e.x>>e.y;// 0 0 29 49

for(int i=0;i<n;i++){
	for(int j=0;j<m;j++){
		cin>>a[i][j];
	}
}
cout<<bfs()<<endl;//最短步数 
dfs(n-1,m-1);//递归打印 本题dfs(29,49);
return 0;
} 

输出结果:

186
D D D D R R U R R R R R R D R R R R D D D L D D R D D D D D D D D D D D D R D D R R R 
U R R U U R R D D D D R D R R R R R R D R R U R R D D D R R R R U U R U U U U U U U L
 U L L U U U U R R R R U U L L L U U U U L L U U U L U U R R U R R U R U R R R D D R R
  R R R D D R R D D L L L D D R R D D R D D L D D D L L D D L L L D L D D D L D D R R
   R R R R R R R D D D D D D R R

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值